Поддержка развития альтернативных источников энергии. Нужна ли в россии альтернативная энергетика. Решение экологических глобальных проблем

Снизить потребление сырой нефти и других традиционных видов топлива можно, заменив их другими источниками энергии.

1)Ядерная энергия . После чернобыльской катастрофы в апреле 1986 года нетрудно понять, почему интерес к атомным электростанциям (АЭС) сменился недоверием. Если сопоставить работу двух электростанций ТЭС и АЭС одной и той же мощности (1000 МВт) в течение года, выяснится следующее:

Потребность в топливе. Для ТЭС необходимо 3,5 млн т угля; добыча такого его количества открытым способом нанесет серьезный ущерб ландшафту, окружающим водоемам и за счет кислотного выщелачивания - грунтовым водам. Для АЭС потребуется 1,5 т обогащенного урана, что соответствует всего 1000 т урановой руды.

Выделение углекислого газа. В результате работы угольной ТЭС в атмосферу поступит более 10 млн т углекислого газа, что усугубит парниковый эффект. АЭС вообще углекислого газа не выделяет.

Двуокись серы и другие компоненты, кислотных дождей. Выбросы этих загрязнений составят на ТЭС более 400 тыс. т; на АЭС они не образуются.

Твердые отходы. Проблема их захоронения существует в обоих случаях. Радиоактивные отходы АЭС составят около 2 т; на ТЭС образуется около 100 тыс. т золы.

Именно радиоактивные отходы и возможности аварий на АЭС вызывают тревогу ученых и общественности.

2) Солнечная энергия - это кинетическая энергия излучения (в основном света), образующаяся в результате термоядерных реакций в недрах Солнца. Ее запасы практически неистощимы (астрономы подсчитали, что Солнце будет «гореть» еще несколько миллиардов лет). Также подсчитано, что примерно 1% солнечной энергии вполне достаточно для обеспечения всех нужд транспорта, промышленности и нашего быта не только сейчас, но и в обозримом будущем. Более того, вне зависимости от того, будем мы ее использовать или нет, на энергетическом балансе Земли и состоянии биосферы это никак не отразится.

По использованию солнечной энергии на душу населения на первом месте в мире стоит Кипр, где 90% коттеджей и большое число отелей и многоквартирных домов располагают солнечными водонагревателями. В Израиле солнечная энергия обеспечивает 65% горячего водоснабжения жилищ.

Основными источниками энергии являются:

Солнечные батареи, изготовленные из особых материалов, в которых падающая энергия света индуцирует поток электронов, т. е. попросту электрический ток;

- «энергобашни» - вероятно, в детстве вы не раз пользовались увеличительным стеклом, чтобы прожечь дырку в бумаге. Своеобразное применение подобный подход нашел в так называемых «энергобашнях». Установленные на площади в несколько гектаров зеркала фокусируют солнечный свет на котле, находящемся на вершине башни. Высокая температура превращает воду в пар, приводящий в движение обычный турбогенератор. По своей рентабельности энергобашни могут конкурировать с АЭС, а кроме того, не загрязняют окружающую среду;


Солнечные пруды - это еще более дешевый способ улавливать и запасать солнечную энергию. Искусственный водоем частично заполняется рассолом (очень соленой водой), поверх которого на­ходится пресная вода. Плотность рассола гораздо выше, поэтому он остается на дне и с верхним слоем почти не смешивается. Солнечные лучи без помех проходят через пресную воду, но поглощаются рассолом, превращаясь при этом в тепло. Верхний слой действует как изоляция, не позволяя остывать нижнему. Иными словами, в солнечных прудах используется тот же принцип, что и в парниках, только земля и стекло заменены здесь соответственно рассолом и пресной водой. Поскольку солнечный пруд представ­ляет собой высокоэффективный теплоаккумулятор, с его помощью можно получать энергию непрерывно.

3) Энергетическое использование биомассы Биомассой называется любая органика, образующаяся за счет фотосинтеза. Ее энергетическое использование - непосредственное применение в виде топлива или переработка в различные его виды. Здесь существует несколько способов.

Снизить потребление сырой нефти и других традиционных видов топлива можно, заменив их другими источниками энергии.

1)Ядерная энергия . После чернобыльской катастрофы в апреле 1986 года нетрудно понять, почему интерес к атомным электростанциям (АЭС) сменился недоверием. Если сопоставить работу двух электростанций ТЭС и АЭС одной и той же мощности (1000 МВт) в течение года, выяснится следующее:

Потребность в топливе. Для ТЭС необходимо 3,5 млн т угля; добыча такого его количества открытым способом нанесет серьезный ущерб ландшафту, окружающим водоемам и за счет кислотного выщелачивания - грунтовым водам. Для АЭС потребуется 1,5 т обогащенного урана, что соответствует всего 1000 т урановой руды.

Выделение углекислого газа. В результате работы угольной ТЭС в атмосферу поступит более 10 млн т углекислого газа, что усугубит парниковый эффект. АЭС вообще углекислого газа не выделяет.

Двуокись серы и другие компоненты, кислотных дождей. Выбросы этих загрязнений составят на ТЭС более 400 тыс. т; на АЭС они не образуются.

Твердые отходы. Проблема их захоронения существует в обоих случаях. Радиоактивные отходы АЭС составят около 2 т; на ТЭС образуется около 100 тыс. т золы.

Именно радиоактивные отходы и возможности аварий на АЭС вызывают тревогу ученых и общественности.

2) Солнечная энергия - это кинетическая энергия излучения (в основном света), образующаяся в результате термоядерных реакций в недрах Солнца. Ее запасы практически неистощимы (астрономы подсчитали, что Солнце будет «гореть» еще несколько миллиардов лет). Также подсчитано, что примерно 1% солнечной энергии вполне достаточно для обеспечения всех нужд транспорта, промышленности и нашего быта не только сейчас, но и в обозримом будущем. Более того, вне зависимости от того, будем мы ее использовать или нет, на энергетическом балансе Земли и состоянии биосферы это никак не отразится.

По использованию солнечной энергии на душу населения на первом месте в мире стоит Кипр, где 90% коттеджей и большое число отелей и многоквартирных домов располагают солнечными водонагревателями. В Израиле солнечная энергия обеспечивает 65% горячего водоснабжения жилищ.

Основными источниками энергии являются:

Солнечные батареи, изготовленные из особых материалов, в которых падающая энергия света индуцирует поток электронов, т. е. попросту электрический ток;

- «энергобашни» - вероятно, в детстве вы не раз пользовались увеличительным стеклом, чтобы прожечь дырку в бумаге. Своеобразное применение подобный подход нашел в так называемых «энергобашнях». Установленные на площади в несколько гектаров зеркала фокусируют солнечный свет на котле, находящемся на вершине башни. Высокая температура превращает воду в пар, приводящий в движение обычный турбогенератор. По своей рентабельности энергобашни могут конкурировать с АЭС, а кроме того, не загрязняют окружающую среду;

Солнечные пруды - это еще более дешевый способ улавливать и запасать солнечную энергию. Искусственный водоем частично заполняется рассолом (очень соленой водой), поверх которого на­ходится пресная вода. Плотность рассола гораздо выше, поэтому он остается на дне и с верхним слоем почти не смешивается. Солнечные лучи без помех проходят через пресную воду, но поглощаются рассолом, превращаясь при этом в тепло. Верхний слой действует как изоляция, не позволяя остывать нижнему. Иными словами, в солнечных прудах используется тот же принцип, что и в парниках, только земля и стекло заменены здесь соответственно рассолом и пресной водой. Поскольку солнечный пруд представ­ляет собой высокоэффективный теплоаккумулятор, с его помощью можно получать энергию непрерывно.

3) Энергетическое использование биомассы Биомассой называется любая органика, образующаяся за счет фотосинтеза. Ее энергетическое использование - непосредственное применение в виде топлива или переработка в различные его виды. Здесь существует несколько способов:

Получение спирта. Когда дрожжи в анаэробных условиях питаются сахаром и/или крахмалом, в качестве побочного продукта выделяется спирт, происходит так называемое спиртовое брожение. Первой страной, начавшей крупномасштабное производство спирта из сахарного тростника как автомобильного горючего, стала Бразилия. В настоящее время многие автомобили там работают на его смеси с бензином - так называемом бензоспирте.

4) Гидроэнергия. В течение тысячелетий падающая вода использовалась для вращения различных лопа­стей, колес и турбин. Однако Земля не располагает достаточным количеством крупных естественных водопадов, поэтому еще в XIX веке началось строи­тельство высоких плотин, создающих искусственные перепады воды, позволяющие получать значительное количество гидроэлектроэнергии. Строительство плотин привело к затоплению ряда красивейших реч­ных долин, гибели их растительного и животного мира, исчезновению ценных сельскохозяйственных угодий, лесов, территорий, представляющих археоло­гический, геологический интерес. Поскольку расход воды, проходящей через плотину ГЭС, регулируется в зависимости от потребностей в электроэнергии, ниже по течению уровень реки в течение дня может меняться от почти полного пересыхания до паводко­вых отметок. Экологические нарушения вызывают­ся и снижением количества биогенов, достигающих ее устья. Следовательно, любые предложения по стро­ительству новых ГЭС должны рассматриваться с уче­том того, окупают ли доходы от электроэнергии эко­логический и социальный ущерб, наносимый созда­нием водохранилища.

5) Энергия ветра. Ветер представляет собой одну из форм преобразованной солнечной энергии, так как его причина - неравномерное нагревание атмосферы Солнцем. В настоящее время это современные машины, называемые ветротурбинами. Чем больше площадь лопастей ветротурбины, тем больше она позволяет по­лучить энергии: значит, вдвое удлинив лопасти, можно в четыре раза увеличить выход энергии. Так, установ­ка с размахом лопастей около 100 м, размещенных на башне высотой порядка 60 м, при оптимальной скоро­сти ветра дает энергию 2,5 МВт, что достаточно для энергоснабжения около 2500 жилых домов. В боль­шинстве регионов мира есть территории, где ветры дуют практически постоянно, что делает использова­ние ветротурбин вполне рентабельным.

6) Геотермальная энергия. Поскольку в недрах Земли в результате распада природных радиоактивных веществ идет постоянное высвобождение энергии, внутренняя часть планеты представляет собой расплавленную горную породу, которая время от времени вырывается наружу в виде вулканических извержений и других загрязнителей, в частности соединений серы. Эти примеси вызывают быструю коррозию турбин и другого оборудования, а выбрасываясь в конечном итоге в окружающую среду, загрязняют воздух и воду. Наконец, число мест с геотермальными водами невелико и многие из них расположены далеко от потребителей энергии.

7) Энергия приливов и отливов. В приливах и отливах, сменяющих друг друга дважды в день, также заключена огромная энергия. Предложено множество интересных проектов использования этого экологичес­ки чистого и неиссякаемого источника. Самое простое из предложений заключается в постройке плотины с турбинами поперек устья морского залива. Вода, проходя во время прилива через отверстия в плотине, приводит турбины в движение, генерируя электроэне­гию. При отливе наклон лопастей меняется на противоположный и генераторы продолжают работать без остановки. В настоящее время в мире функционируют две приливно-отливные электростанции - в нашей стране и во Франции. Выработка электроэнергии на таких установках рентабельна при амплитуде колебаний уровня воды не менее 6 м. На Земле есть около 15 мест, где амплитуда приливов и отливов достигает такой величины.

Но и у этого вида энергии есть недостатки экологического характера. Плотины вызовут существенную деградацию окружающей среды. Они станут задерживать наносы, мешать миграции морских организмов, нарушать сложившиеся механизмы циркуляции и перемешивания морских и пресных вод.

Итак, обзор различных альтернативных источников энергии показывает, что на пороге широкомасштабного промышленного внедрения находятся только три из них: ветротурбины, солнечные батареи и биогаз. Если добавить к этому энергосбережение, есть надежда на решение встающих энергетических проблем; таким образом, строительство новых атомных и тепловых электростанций вовсе не обязательно. Однако их придется еще какое-то время сохранять в качестве резервных для стабильного энергообеспечения.

Конец работы -

Эта тема принадлежит разделу:

Экология

Федеральное государственное бюджетное образовательное.. Учреждение высшего профессионального образования.. Волгоградский государственный архитектурно строительный..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие положения
В методических указаниях приведен курс лекций по дисциплине «Экология » в соответствии с Государственным образовательным стандартом высшего профессионального образования. Д

Структура современной экологии
С научной точки зрения вполне обоснованно деле­ние экологии на теоретическую и прикладную: теоретическая экология вскрывает общие закономерности организации жизни;

Популяционная экология
Популяция- группа организмов одного вида, про­живающих в определенном районе. Примерами попу­ляций являются все окуни в пруду, белки обыкновен­ные или дубы белые в лесах, население

Биосфера и человек, структура биосферы
Наша планета имеет неоднородное строение и состоит из концентрических оболочек (геосфер) – внутренних и внешних. К внутренним относятся ядро, мантия, а к внешним – литосфера (земная кора), гидросфе

Экологические факторы
Все организмы живут в среде обитания, или окружающей среде, которая является совокупностью элементов, способных оказывать прямое или косвенное воздействие на организмы. Элементы окружающей среды, о

Экосистемы. Структура и основные компоненты экосистемы
Основополагающим объектом изучения экологии является взаимодействие пяти уровней организации материи: живые организмы, популяции, сообщества, экосистемы и экосфера. Элементарные ча

Энергия в экосистемах, трофические цепи и уровни
Каждый биогеоценоз характеризуется видовым разнообразием, численностью и плотностью популяции каждого вида, биомассой и продуктивностью. Взаимоотношения между организмами в экосистеме в пр

Круговорот веществ в природе. Биохимические круговороты
Круговорот веществ и энергии в природе складывается из нескольких взаимосвязанных процессов: 1. Регулярно повторяющийся или непрерывный приток энергии, а также образование и синтез новых с

Воздействие человека на экосистемы
Научно-техническая революция, огромный рост индустрии и возросшая производительная активность человека меняют облик нашей планеты. В истории человечества сейчас наступил период, когда общество выну

Свойства экологических систем и закономерности их функционирования
Закономерности функционирования экологических систем носят вероятностный характер и определяют основное направление. Важнейшие из всех положений представлены в четырех постулатах: 1. Резул

Взаимоотношения организма и среды
Окружающая человека среда состоит из четырех взаимосвязанных компонентов-подсистем: а) собственно природной среды; б) порожденной агротехнической среды – «второй природы», в) искусственной

Антропогенное воздействие на природу
В последние 100 лет человечество стало оказывать заметное воздействие на функционирование биосферы. В предисторической фазе люди жили в условиях энергетической недостаточности и вынуждены

Загрязнение воды
Загрязнители воды - это все химические вещества, так или иначе загрязняющие воду, делающие ее непригодной для питья или же вредной для гидробионтов. Среди загрязнителей водной сред

Загрязнение и иные воздействия на литосферу
В настоящее время плоды деятельности человека становятся не только одним из ведущих геологических факторов по своим масштабам, но и качественно отличаются от всех доантропогенных видов экзогенного

Деградация и эрозия почв
Деградация почв.В тесной, точнее непосредственной связи и взаимодействии с приповерхностной частью литосферы находятся почвы. Экологические функции почвы весьма изменчивы,

Экологические проблемы сельского хозяйства
Некоторые экологические проблемы сельского хозяйства.Взначительной степени экологические проблемы, характерные для почв имеют отношение к агроэкологии. Сущность экологичес

Загрязнение атмосферы
Атмосферный воздух - один из важнейших жизнеобеспечивающих природных компонентов на Земле - представляет собой смесь газов и аэрозолей приземной части атмосферы, сложившуюся в ходе

Воздействие на гидросферу
Вода представляет собой один из наиболее важных компонентов, обеспечивающих жизнь на нашей планете. Обладая рядом аномальных свойств, она влияет на протекающие в экосистемах сложнейшие физико-химич

Влияние природно-экологических факторов на здоровье человека
Изначально Homo sapiens жил в окружающей среде, как и все консументы экосистемы, и был практически незащищен от действия ее лимитирующих экологических факторов. Первобытный человек

Влияние социально-экологических факторов на здоровье человека
Урбанизированная или городская среда - это искусственный мир, созданный человеком, не имеющий аналогов в природе и способный существовать только при постоянном обновлении.

Генетические факторы и здоровье человека
При всей значимости влияния внешней среды роль наследственных факторов для здоровья человека часто оказывается определяющей. Если других факторов риска человек может избежать, то на

Состояние окружающей среды и здоровье человека
К факторам внешней среды, оказывающим влияние на организм, следует отнести: характер пищи, энергетические воздействия (включая физические поля), динамический и химический характер а

Качество медицинского обеспечения и здоровье человека
На первый взгляд, доля ответственности здравоохранения за обеспечение здоровья (10 - 15 %) кажется неожиданно низкой. А ведь именно с ним большинство людей связывает свои надежды на

Проблема народонаселения
Последние 150 лет население Земли росло и продолжает расти феноменальными, взрывообразными темпами. Приблизительно до начала XVIII века человечество увеличивалось медленно, со средней скор

Типы природных ресурсов и их использование
Человечество всегда в той или иной мере использовало даримые природой богатства. Но постепенно размеры изымаемых природных ресурсов увеличивались, становились все более весомыми и о

Энергосбережение
Прогресс цивилизации представляет собой процесс замены человеческого труда другими источниками энергии. К настоящему времени для получения 1 т зерна, кроме человеческих рук и солнечной эне

Экономика природопользования и ее основные задачи
Экономика природопользования - раздел экономики, изучающий главным образом вопросы экономической (в ряде случаев и внеэкономической) оценки природных ресурсов и ущербов от загрязнен

Кадастры природных ресурсов
Система мер по восстановлению и оздоровлению окружающей среды, денежная оценка природного ресурса определяются на основе кадастров природных ресурсов. Кадастры природных р

Особо охраняемые природные территории (ООПТ)
Особо охраняемые природные территории (ООПТ) - территории или акватории, в пределах которых запрещено их хозяйственное использование и поддерживается их естественное состояние в целях сохранения эк

Лицензия, договор и лимиты на природопользование
Порядок пользования природной средой и природными ресурсами основывается на принципах охраны природной среды и неистощимости использования природных ресурсов, создания нормальных эк

Понятие о концепции устойчивого развития
Концепция устойчивого развития вошла в природоохранный лексикон после Конференции ООН по окружающей среде и развитию (Рио-де-Жанейро, 1992 г.). По первоначальному определен

Основные меры борьбы с загрязнением водоемов. Методы очистки воды
Всемирная организация здравоохранения еще в 80-х гг. обнародовала сведения, согласно которым в мире ежесуточно умирает 25 тыс. человеке в результате употребления загрязненной воды. Природн

Методы очистки воды
Очистка воды предназначена для доведения всех параметров, характеризующих ее качество, до нормативных показателей. Существенно отличается очистка воды для питьевых нужд, в технологических целях (ка

Основные загрязнители атмосферы
Основными мерами борьбы с.загрязнением атмосферы являются: грамотное применение экономических санкций (порядок платы за загрязнение предусматривает кратное повышение выплат при пре

Пылеуловители
Наиболее отработаны в настоящее время очистители от пыли, золы и других твердых частиц. Причем, чем мельче частицы, тем труднее обеспечивается очистка. Класс пылеуловителей для частиц диаметром бол

Газо- и пароочистители
Эти аппараты по принципу действия можно подразделить на пять групп. Наиболее распространены скрубберные газоочистители, которые практически не отличаются от скрубберных пылеуловителей (зач

Об улучшении экологических характеристик топлива
Определяющее влияние транспорта на состояние окружающей среды требует особого внимания к при­менению новых экологически чистых видов топлива. К ним относится, прежде все­го, сжиженн

Основы экологического права
Экологическое право - совокупность эколого-правовых норм (правил поведения), регулирующих общественные (экологические) от­ношения в сфере взаимодействия общества и природы с целью

Общие законопроекты
1.Федеральный закон «Об охране окружающей среды» от 10.01.2002 № 7-ФЗ. 2. Федеральный закон «Об экологической экспертизе» от 23.11.95 174-ФЗ (с изменениями от 15.04.98). 3. Федера

Государственные органы охраны окружающей среды
Государственные органы управления и контроля в области охра­ны окружающей среды подразделяются на две категории: органы общей и специальной компетенции. К государственным органам о

Экологическая стандартизация и паспортизация
Общие положения экологического законодатель­ства России конкретизируются в государственных стандартах (ГОСТ), которые, так же как постановления, инструкции и решения, относятся к

Экологическая экспертиза
В соответствии с Федеральным законом «Об эко­логической экспертизе» от 23.11.1995 г. термин «экологическая экспертиза» определяется следую­щим образом: Экологическа

Юридическая ответственность за экологические правонарушения
Юридическая ответственность - это обязатель­ство юридических и физических лиц перед обще­ством и государством относительно соблюдения дей­ствующих законов по охране окружающей сред

Экологическая безопасность человека
Экологическая безопасность обычно определяется как состояние защищенности человека от воздействия негативных факторов окружающей среды. Человечество находится уже в таком п

Международное сотрудничество в области природопользования и охраны окружающей среды
Природа не знает государственных границ, она все­обща и едина. Поэтому нарушения в экосистеме од­ной страны неминуемо вызывают ответную реакцию в сопредельных. Так же не признают государственных гр

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.

Ни для кого не секрет, что используемые сегодня человечеством ресурсы конечны, более того, их дальнейшая добыча и использование может привести не только к энергетической, но и к экологической катастрофе. Традиционно используемые человечеством ресурсы — уголь, газ и нефть — закончатся уже спустя несколько десятилетий, и меры нужно принимать уже сейчас, в наше время. Конечно, можно надеяться, что мы вновь найдем какое-либо богатое месторождение, так же как было в первой половине прошлого века, однако ученые уверены, что таких крупных залежей уже нет. Но в любом случае даже открытие новых месторождений только отсрочит неизбежное, необходимо найти способы производства альтернативной энергии, и переходить на возобновляемые ресурсы, такие как ветер, солнце, геотермальная энергия, энергия водных потоков и другие, а наряду с этим нужно продолжать разработки энергосберегающих технологий.

В этой статье мы рассмотрим несколько самых перспективных, на взгляд современных ученых, идей, на которых будет строиться энергетика будущего.

Солнечные станции

Люди издавна задумывались над тем, возможно ли Под солнечными лучами нагревали воду, сушили одежду и глиняную посуду перед ее отправкой в печь, однако эти способы нельзя назвать эффективными. Первые технические средства, преобразующие солнечную энергию, появились еще в 18 веке. Французский ученый Ж. Бюффон показал опыт, в котором ему удалось с помощью большого вогнутого зеркала в ясную погоду воспламенить сухое дерево с расстояния около 70 метров. Его соотечественник, известный ученый А. Лавуазье, применял линзы, чтобы концентрировать энергию солнца, а в Англии создали двояковыпуклое стекло, которое, фокусируя солнечные лучи, расплавляло чугун всего за несколько минут.

Естествоиспытатели проводили множество опытов, которые доказывали, что солнца на земле возможно. Однако солнечная батарея, которая превращала бы солнечную энергию в механическую, появилась сравнительно недавно, в 1953 году. Ее создали ученые из Национального аэрокосмического агентства США. Уже в 1959 году солнечную батарею впервые применили для оснащения космического спутника.

Возможно уже тогда, осознав, что в космосе такие батареи гораздо эффективнее, ученым пришла идея о создании космических солнечных станций, ведь за час солнце вырабатывать столько энергии, сколько все человечество не потребляет и за год, так почему же не использовать это? Какой будет солнечная энергетика будущего?

С одной стороны кажется, что использование солнечной энергии идеальный вариант. Однако себестоимость огромной космической солнечной станции очень высока, да и к тому же она будет дорога в эксплуатации. Со временем, когда будут введены новые технологии по доставке грузов в космос, а также новые материалы, реализация подобного проекта станет возможной, но пока мы можем пользоваться только относительно небольшими батареями на поверхности планеты. Многие скажут, что это тоже неплохо. Да, возможно в условиях частного дома, но для энергообеспечения больших городов, соответственно, необходимо либо множество солнечных батарей, либо технология, которая сделает их эффективнее.

Экономическая сторона вопроса здесь тоже присутствует: любой бюджет сильно пострадает, если на него будет возложена задача перевести целый город (или всю страну) на солнечные батареи. Казалось бы, можно обязать жителей городов выплачивать некоторые суммы на переоснащение, но в таком случае недовольны будут они, ведь если бы люди готовы были бы пойти на такие траты, они уже давно сделали бы это сами: возможность купить солнечную батарею есть у каждого.

Касательно солнечной энергии есть и еще один парадокс: затраты на производство. Перевод энергии солнца в электричество напрямую — не самая эффективная вещь. До сих пор еще не найдено способа лучше, чем использовать солнечные лучи для нагревания воды, которая, превращаясь в пар, в свою очередь вращает динамо-машину. В таком случае энергопотеря минимальна. Человечество хочет использовать "экологичные" солнечные панели и солнечные станции, чтобы сохранить ресурсы на земле, однако для подобного проекта потребуется огромное количество тех же ресурсов, и "неэкологичной" энергии. Например, во Франции недавно была построена солнечная электростанция, площадью около двух квадратных километров. Стоимость постройки составила около 110 миллионов евро, не считая затрат на эксплуатацию. При всем этом следует учитывать, что срок службы подобных механизмов составляет около 25 лет.

Ветер

Энергия ветра — также использовалась людьми еще с древности, самым простым примером можно назвать хождение под парусом и ветряные мельницы. Ветряки используются и сейчас, особенно они эффективны в областях с постоянными ветрами, например на побережье. Ученые постоянно выдвигают идеи, как модернизировать уже имеющиеся приспособления для преобразования ветряной энергии, одна из них - ветряки в виде парящих турбин. За счет постоянного вращения они могли бы "висеть" в воздухе на расстоянии нескольких сотен метров от земли, где ветер сильный и постоянный. Это помогло бы в электрификации сельской местности, где невозможно использование стандартных ветряков. К тому же такие парящие турбины могли бы быть оснащены интернет-модулями, с помощью которых осуществлялось бы обеспечение людей доступом в мировую паутину.

Приливы и волны

Бум на солнечную и ветряную энергетику постепенно проходит, и интерес исследователей привлекла другая природная энергия. Более перспективной считается использование приливов и отливов. Уже сейчас этим вопросом занимается около ста компаний по всему миру, существует и несколько проектов, доказавших эффективность данного способа добычи электричества. Преимущество перед солнечной энергетикой в том, что потери при переводе одной энергии в другую минимальны: приливная волна вращает огромную турбину, которая и вырабатывает электричество.

Проект "Устрица" — это идея установить на дне океана шарнирный клапан, который будет подавать воду на берег, тем самым вращая простую гидроэлектрическую турбину. Всего одна такая установка могла бы обеспечить электричеством небольшой микрорайон.

Уже сейчас в Австралии успешно применяют приливные волны: в городе Перте установлены опреснители, работающие на этом типе энергии. Их работа позволяет обеспечить пресной водой около полумиллиона человек. Природная энергетика и промышленность также могут сочетаться в этой отрасли производства энергии.

Использование несколько отличается от технологий, которые мы привыкли видеть в речных гидроэлектростанциях. Часто ГЭС наносят вред окружающей среде: затопляются прилегающие территории, разрушается экосистема, а вот станции, работающие на приливных волнах, в этом плане гораздо безопаснее.

Энергия человека

Одним из самых фантастических проектов в нашем списке можно назвать использование энергии живых людей. Звучит ошеломляюще и даже несколько ужасающе, но не все так страшно. Ученые лелеют мысль о том, как использовать механическую энергию движения. Речь в этих проектах идет о микроэлектронике и нанотехнологиях с низким энергопотреблением. Пока звучит как утопия, реальных разработок нет, но идея весьма интересная и не покидает умы ученых. Согласитесь, весьма удобны будут устройства, которые подобно часам с автоматической подзаводкой, будут заряжаться от того, что по сенсору проводят пальцем, или от того, что планшет или телефон просто болтается в сумке при ходьбе. Не говоря уж об одежде, которая, наполненная разными микроустройствами, могла бы преобразовывать в электричество энергию движения человека.

В Беркли, в лаборатории Лоуренса, например, ученые попытались воплотить в жизнь идею о том, чтобы использовать вирусы для давления в электричество. Небольшие механизмы, работающие от движения, так же имеются, однако пока что на поток подобная технология не поставлена. Да, с глобальным энергетическим кризисом подобным образом не справиться: скольким же людям придется "крутить педали", чтобы заставить работать целый завод? Но как одна из мер, применяемых в комплексе, теория вполне жизнеспособна.

Особенно подобные технологии будут эффективны в труднодоступных местах, на полярных станциях, в горах и тайге, среди путешественников и туристов, у которых не всегда есть возможность зарядить свой гаджет, а вот оставаться на связи важно, особенно если группа попала в критическую ситуацию. Как много всего можно было бы предотвратить, если бы у людей всегда было надежное устройство связи, не зависящее "от розетки".

Топливные ячейки водорода

Пожалуй, у каждого владельца авто, глядящего на индикатор количества бензина, приближающийся к нулю, возникала мысль о том, как отлично было бы, если бы машина работала на воде. Но сейчас ее атомы попали в поле зрения ученых как настоящие объекты энергетики. Дело в том, что в частицах водорода — самого распространенного газа во вселенной — содержится громадное количество энергии. Более того, двигатель сжигает этот газ практически без побочных продуктов, то есть, мы получаем очень экологичное топливо.

Водородом заправляют некоторые модули МКС и шатлы, но на Земле он существует в основном в виде соединений, таких как вода. В восьмидесятых годах в России были разработки самолетов, использующих в качестве топлива водород, эти технологии даже применяли на практике, и экспериментальные модели доказали свою эффективность. Когда водород отделяется, он перемещается в специальную топливную ячейку, после чего возможна генерация электричества напрямую. Это не энергетика будущего, это уже реальность. Подобные автомобили уже производятся и довольно большими партиями. Компания Honda, дабы подчеркнуть универсальность источника энергии и авто в целом, провела эксперимент в результате которого машина была подключена к электрической домашней сети, однако не для того, чтобы получить подзарядку. Автомобиль может обеспечивать энергией частный дом в течение нескольких дней, или проехать без дозаправки почти пятьсот километров.

Единственный недостаток подобного источника энергии на данный момент — это относительно высокая стоимость таких экологичных машин, и, конечно, достаточно небольшое количество водородных заправок, однако во многих странах уже планируется их постройка. Например, в Германии уже стоит план об установке ста заправочных станций к 2017 году.

Тепло земли

Превращение тепловой энергии в электричество — это и есть сущность геотермальной энергетики. В некоторых странах, где затруднено использование других отраслей, она используется довольно широко. Например, на Филлипинах 27 % всего электричества приходится именно на геотермальные станции, а в Исландии этот показатель составляет около 30 %. Сущность этого способа добычи энергии довольно проста, механизм схож с простой паровой машиной. До предполагаемого "озера" магмы необходимо пробурить скважину, через которую подается вода. При контакте с раскаленной магмой вода мгновенно превращается в пар. Он поднимается, где крутит механическую турбину, тем самым вырабатывая электричество.

Будущее геотермальной энергетики состоит в том, чтобы найти большие "хранилища" магмы. Например, в вышеупомянутой Исландии это удалось: раскаленная магма за долю секунды превратила всю закачанную воду в пар температурой около 450 градусов по Цельсию, что является абсолютным рекордом. Подобный пар высокого давления способен повысить эффективность геотермальной станции в несколько раз, это может стать толчком к развитию геотермальной энергетики во всем мире, особенно в областях, насыщенных вулканами и термальными источниками.

Использование ядерных отходов

Атомная энергетика, в свое время, произвела настоящий фурор. Так было до тех пор, пока люди не осознали всю опасность этой отрасли энергетики. Аварии возможны, от подобных случаев никто не застрахован, но они весьма редки, а вот радиоактивные отходы появляются стабильно и до недавнего времени ученые не могли решить эту проблему. Дело в том, что стержни урана — традиционное "топливо" АЭС, может быть использовано только на 5 %. После выработки этой небольшой части, весь стержень отправляется на "свалку".

Ранее применялась технология, при которой стержни погружались в воду, которая замедляет нейтроны, поддерживая устойчивую реакцию. Сейчас вместо воды стали использовать жидкий натрий. Эта замена позволяет не только использовать весь объем урана, но и переработать десятки тысяч тонн радиоактивных отходов.

Избавить планету от отходов атомной энергетики важно, но в самой технологии есть одно "но". Уран относится к ресурсам, и его запасы на Земле конечны. В случае если всю планету перевести исключительно на энергию, получаемую от АЭС (к примеру, в США АЭС производят лишь 20% всего потребляемого электричества), запасы урана будут истощены довольно быстро, и это снова приведет человечество на порог энергетического кризиса, так что атомная энергетика, пусть и модернизированная, только временная мера.

Растительное топливо

Еще Генри Форд, создав свою "Модель Т", рассчитывал, что она уже будет работать на биотопливе. Однако в то время были открыты новые нефтяные месторождения, и нужда в альтернативных источниках энергии отпала еще на несколько десятков лет, но теперь снова возвращается.

За последние пятнадцать лет использование растительных видов топлива, таких как этанол и биодизель, возросло в несколько раз. Их используют как самостоятельные источники энергии, так и в качестве добавок к бензину. Некоторое время назад надежды возлагались на особую просяную культуру, получившую название "канола". Она совершенно непригодна в пищу ни для людей, ни для скота, однако обладает высокими показателями масличности. Из этого масла и стали производить "биодизель". Но эта культура займет слишком много места, если попытаться вырастить ее столько, чтобы обеспечить топливом хотя бы часть планеты.

Теперь ученые заговорили об использовании водорослей. Их масличность около 50 %, что позволит так же легко извлекать масло, а отходы можно превращать в удобрения, на основе которых будут выращиваться новые водоросли. Идея считается интересной, но свою жизнеспособность пока что не доказала: публикация об успешных экспериментах в этой области пока не опубликовано.

Термоядерный синтез

Будущая энергетика мира, по мнению современных ученых, невозможна без технологий Это, на данный момент, самая перспективная разработка, в которую уже вкладывают миллиарды долларов.

В используется энергия деления. Она опасна тем, что есть угроза возникновения неуправляемой реакции, которая уничтожит реактор, и приведет к выбросу огромного количества радиоактивных веществ: пожалуй, все помнят аварию на Чернобыльской АЭС.

В реакциях термоядерного синтеза, что следует из названия, используется энергия, выделяемая при слиянии атомов. В результате, в отличие от атомного деления, не образуется никаких радиоактивных отходов.

Главной проблемой является то, что в результате термоядерного синтеза образуется вещество, имеющее настолько высокую температуру, что может уничтожить весь реактор.

Будущего — реальность. И фантазии здесь неуместны, на данный момент на территории Франции уже началась постройка реактора. Несколько миллиардов долларов вложено в экспериментальный проект, который профинансирован многими странами, в число которых, помимо ЕС, входят Китай и Япония, США, Россия и другие. Изначально первые эксперименты планировалось запустить уже в 2016 году, однако расчеты показали, что бюджет слишком мал (вместо 5 миллиардов потребовалось 19), и запуск перенесли еще на 9 лет. Возможно, через несколько лет мы увидим, на что способна термоядерная энергетика.

Проблемы настоящего и возможности будущего

Не только ученые, но и писатели-фантасты, дают множество идей для воплощения технологии будущего в энергетике, однако все сходятся на том, что пока что ни один из предложенных вариантов не может произвести полное обеспечение всех потребностей нашей цивилизации. К примеру, если все автомобили в США будут ездить на биотопливе, полями канолы придется засадить территорию, равную половине всей страны, без учета того, что земель, пригодных для земледелия в Штатах не так уж много. Более того, пока что все способы производства альтернативной энергии - дороги. Пожалуй, каждый из простых городских жителей, согласен, что важно использовать экологически чистые, возобновляемые ресурсы, однако не в случае, когда им озвучивают стоимость такого перехода на данный момент. Ученым предстоит еще много работать в этой сфере. Новые открытия, новые материалы, новые идеи - все это поможет человечеству успешно справиться с назревающим ресурсным кризисом. Решить планеты можно только комплексными мерами. В некоторых областях удобнее применять добычу энергии с помощью ветра, где-то - солнечные батареи, и так далее. Но, возможно, главным фактором станет снижение энергопотребления в целом и создание энергосберегающих технологий. Каждый человек должен понимать, что несет ответственность за планету, и каждый должен задать себе вопрос: "Какую энергетику я выбираю для будущего?" Прежде чем перейти на другие ресурсы, каждый должен осознать, что это действительно необходимо. Только при комплексном подходе удастся решить проблему энергопотребления.

Когда говорят об альтернативной энергетике, то обычно имеют в виду установки по производству электрической энергии из возобновляемых источников – солнечного света и ветра. При этом статистика исключает , станциях, использующих силу морских и океанических приливов, а также геотермальные электростанции. Хотя, эти источники энергии также являются возобновляемыми. Однако, они традиционные, используются в промышленных масштабах уже долгие годы.

Идея использовать силу ветра и солнечную энергию для производства электроэнергии достаточно привлекательная. Ведь это позволит отказаться от использования топлива. Даже привычный пейзаж должен будет измениться. Исчезнут трубы тепловых электростанций, саркофаги атомных. Многие страны перестанут находится в постоянной зависимости от закупок ископаемого топлива. Ведь солнце и ветер есть на Земле повсюду.

Но сможет ли такая энергетика вытеснить традиционную? Оптимисты считают, что так и произойдет. У пессимистов другой взгляд на проблему.


Всемирная статистика показывает, что рост инвестиций в альтернативную энергетику, начиная с 2012 года снижается . Наблюдается даже спад в абсолютных цифрах. Снижение в мировом масштабе произошло в основном за счет Соединенных Штатов Америки, стран Западной Европы. Его не смог даже компенсировать рост японских и китайских инвестиций.

Возможно, статистика несколько искаженная, ведь практически, не поддаются учету точечные производители альтернативной энергетики – отдельные солнечные батареи на крышах жилых домов, ветровые установки, обслуживающие отдельные фермерские хозяйства. А на них по оценкам экспертов приходится около трети всей альтернативной энергетики.

Германия справедливо считается лидером в производстве электричества из возобновляемых источников. Во многом ее энергетика является своеобразным полигоном для выработки перспективных моделей. Установленная мощность ее ветровой и солнечной генерации составляет 80 ГВт. 40 процентов мощностей принадлежит частным лицам, около 10 – фермерам. И только половина – компаниям и государству.

Примерно каждый двенадцатый гражданин Германии является собственником альтернативной энергетической установки. Примерно такие же цифры характеризуют Италию с Испанией. Солнечные энергоустановки подключены к общей сети, таким образом их владельцы одновременно производят и потребляют электроэнергию.


В прежние годы получать альтернативную энергию потребители могли лишь в солнечную погоду, но в настоящее время активно расширяется использование целых комплексов, в которых солнечные батареи дополнены аккумуляторами – традиционными свинцовыми или современными литиевыми. Таким образом появляется возможность накапливать избыточную энергию, чтобы потом ее использовать в темное время суток или же при плохой погоде.

Специалисты оценивают, что подобная связка, позволяет среднестатистической европейской семье, а это четыре человека, сэкономить 60 процентов потребляемой электроэнергии. Тридцатипроцентную экономию дадут непосредственно солнечные батареи, а еще тридцать аккумуляторы.

Экономия значительная, но вот стоимость такой энергии очень высока. Аккумуляторная батарея на шесть КВтч в среднем имеет стоимость 5 000 евро. Если прибавить стоимость установки, обслуживания, выплату налогов и другие расходы, то установка на шесть КВтч обойдется от десяти до двадцати тысяч евро. Теперь же в Германии действует тариф на электричество около 25 центов. Поэтому срок окупаемости альтернативной установки для одной семьи составит около тридцати лет.

Понятно, что ни один аккумулятор не прослужит так долго. Но это справедливо лишь для сегодняшних технологий. По мнению специалистов, стоимость, как аккумуляторных батарей, так и солнечных панелей будет снижаться, а тарифы на электроэнергию увеличиваться. Такой видят перспективы владельцы многих компаний, в частности Google. Именно эта компания является лидером по инвестициям в развитие альтернативной энергетики в США. Чтобы подчеркнуть это обстоятельство, на стоянке у ее центрального офиса установлены солнечные батареи.


В Западной Европе некоторые металлургические заводы и производители цемента заявляют, что в ближайшем будущем готовы к тому, чтобы частично использовать энергию солнечных батарей.

Ряд экспертов предрекают резкий спад спроса на традиционные виды энергоносителей и исчезновение атомной энергетики в обозримом будущем. Вероятно, к таким оценкам прислушиваются и американские энергетические компании. Так, в последние годы в США комиссия, которая регулирует атомную энергетику, не утвердила ни один из проектов АЭС.

Однако, при всех радужных перспективах альтернативная энергетика ставит вопросы, на которые пока нет четких ответов. Одна из основных проблем состоит в том, что развитие отрасли происходит в основном с колоссальной государственной поддержкой. Именно неопределенность в том, сохраниться ли такое положение в ближайшие годы, и вызвало падение интереса инвесторов в США, о котором писалось ранее. Та же картина наблюдается и в Италии, правительство которой урезало «зеленые» тарифы, чтобы сократить дефицит бюджета.


Германия производит около четверти всей электроэнергии, используя альтернативные источники, и даже экспортирует ее. Проблема состоит в том, что эта энергия имеет приоритет для поступления на рынок. А это уже дискриминирует традиционных поставщиков, ущемляет их экономические интересы. Государство дотирует производство по альтернативной технологии, но деньги для дотаций берутся за счет повышения тарифов. Примерно 20% стоимости электроэнергии для немцев – это и есть переплата.

Чем больше производится «зеленой» электроэнергии, тем сложнее выживать традиционным энергетическим компаниям. Их бизнес в Германии уже сегодня находится под угрозой. Крупные энергопроизводители, вкладываясь в альтернативную генерацию, сами попали в собственную ловушку. Большая доля «зеленой» электроэнергии уже обрушила оптовые цены.

Солнечные батареи, ветровые установки не могут выдавать энергию в пасмурные дни, при отсутствии ветра, поэтому отказаться от тепловых электростанций пока нереально, но в связи с приоритетом альтернативной электроэнергии, генерирующие мощности ТЭЦ вынуждены простаивать при солнечной погоде и в ветреные дни, а это увеличивает себестоимость их собственной генерации и сказывается на потребителях.


Рассуждая об альтернативной электроэнергии, обосновывая ее экономичность в будущем, обычно оперируют только стоимостью самих установок. Но для того, чтобы вся энергетическая система работала, и потребитель получал электроэнергию без перебоев, необходимо держать наготове традиционные мощности, которые в результате будут загружены лишь на пятую часть от своих генерирующих мощностей, а это дополнительные расходы. Плюс к этому, необходимо кардинально модернизировать электросеть, сделать ее «умной», чтобы обеспечить перетекание в ней электроэнергии на новых принципах. Все это требует многомиллиардных инвестиций, и пока не совсем ясно, за счет кого они возьмутся.

В прессе альтернативная энергетика подается практически беспроблемной отраслью, сулящей в будущем получение дешевой и экологически чистой в производстве электроэнергии, но серьезный бизнес понимает риски, связанные с ней. Государственная поддержка не слишком надежный источник финансирования, делать на него ставку рискованно. Такой «родник» может пересохнуть в любой момент.

И еще одна существенная проблема. Солнечные и ветровые установки требуют отчуждения огромных площадей земли. Если для условий Соединенных Штатов это не большая проблема, то Западная Европа густо заселена. Поэтому крупных проектов, связанных с альтернативной энергетиков пока не осуществляется.

Энергокомпании, стремясь свести риск к минимуму, инвестируют совместно с различными фондами, в том числе, пенсионными, страховыми компаниями. Но даже в Германии все осуществляемые проекты не масштабные, а точечные. Опыта создания и продолжительной эксплуатации больших генерирующих мощностей в мире до сих пор нет.


Пока проблемы альтернативной энергетики, ее риски обсуждаются в основном экспертами, а потому не представляются обществу актуальными. Энергетика, как и всякая другая сложная, разветвленная и устоявшаяся система, имеет большую инерцию. И лишь годы развития какой-либо новой тенденции способны сдвинуть ее с места. По этой причине, скорее всего, развитие альтернативной энергетики будет все же происходить с государственной поддержкой и иметь режим максимального благоприятствования.

Все активнее ведет себя в США «зеленое» лобби. Даже серьезные исследователи делают ставку на альтернативную энергетику. Так, согласно отчету Стэнфордского университета штат Нью-Йорк уже к 2030 году может полностью удовлетворить потребности в электроэнергии за счет солнечных и ветровых установок. При этом в отчете указывается, что, если грамотно расположить их по территории штата, то нет необходимости поддерживать в резерве работоспособные тепловые генерирующие мощности. Правда, совсем отказаться от традиционной энергетики авторы отчета не предлагают.

Альтернативная энергетика уже перестала быть экзотикой, она реально существует. Понятно, что по мере ее развития количество связанных с ней проблем будет лишь нарастать.