Происхождение природных алмазов, их свойства и применение. Физические свойства алмаза

КАК ОБРАЗУЮТСЯ АЛМАЗЫ В ПРИРОДЕ?

(Homines amplius oculis, quam auribus credunt) Люди больше верят глазам, чем ушам.

Алмазный Остров в п.Мама

В начале этого интересного сказа напомню всем читателям и т.н. "ученым", что официальной классификации "алмазоносных пород" не существует!.. Можете поинтересоваться этим вопросом отдельно. А теперь поговорим о том, как же все-таки, пусть неофициально, но образуется алмаз в Природе... (ПОРТНОВ А.М.) НО НА ПРОСТОЙ ВОПРОС: КАК ОБРАЗУЮТСЯ АЛМАЗЫ В ПРИРОДЕ? - ОТВЕТА НЕТ ДО СИХ ПОР. Считается, что алмазы кристаллизовались в неведомых глубинах мантии, а кимберлитовые "трубки взрыва" выносили их к поверхности планеты. В этой общепринятой версии неясно все: и механизм образования алмазов, и размещение на планете алмазоносных пород - кимберлитов, и причины возникновения "кимберлитовых трубок", уходящих корнями в глубины Земли. Алмазам и алмазоносным породам мантии - кимберлитам посвящены тысячи научных статей. Но они не отвечают на три главные загадки коренных алмазных месторождений. Первая: почему кимберлиты расположены только на "платформах", самых стабильных и мощных блоках земной коры? Какие чудовищные силы заставили тяжелые породы мантии Земли нарушить великий закон Архимеда, рвануться вверх и пробить, как бронебойный снаряд невиданной силы, 40 километров более легких пород - базальтов, гранитов, осадочных пород? И почему кимберлитовые трубки "прокалывают" именно мощную земную кору платформ, а не тонкую 10-километровую кору океанического дна или переходной зоны на границе континентов с океанами, где на глубинных разломах дымят сотни вулканов, и лава свободно изливается на поверхность?.. Ответа на этот вопрос у геологов нет.

Вид на Зарю - устье р.Мама Другой загадкой является удивительная форма киберлитовых трубок. На самом деле, это совсем не "трубки", а скорее "бокалы для шампанского", конусы на тонкой ножке, уходящей в глубины планеты. Геологи называют их "трубками взрыва", хотя трудно придумать более нелепое словосочетание: ведь подземные взрывы формируют вовсе не трубки, а сферы! Сейчас разбурены многочисленные так называемые "камуфлетные камеры" - пустоты, оставшиеся после мощных подземных ядерных взрывов. Все эти камеры имеют сферическую форму. Но ведь кимберлитовые "трубки-конусы" действительно существуют! Как они возникли? Ответа на этот вопрос тоже нет. ТРЕТЬЯ ЗАГАДКА КАСАЕТСЯ НЕОБЫЧНОЙ ФОРМЫ ЗЕРЕН МИНЕРАЛОВ В КИМБЕРЛИТАХ. ИЗВЕСТНО, ЧТО МИНЕРАЛЫ, КОТОРЫЕ ПЕРВЫМИ КРИСТАЛЛИЗУЮТСЯ ИЗ РАСПЛАВЛЕННОЙ МАГМЫ, ВСЕГДА ОБРАЗУЮТ ХОРОШО ОГРАНЕННЫЕ КРИСТАЛЛЫ. К ТАКИМ МИНЕРАЛАМ ОТНОСЯТСЯ АПАТИТ, ГРАНАТ, ЦИРКОН, ОЛИВИН, ИЛЬМЕНИТ. ОНИ РАСПРОСТРАНЕНЫ И В КИМБЕРЛИТАХ, НО ЗДЕСЬ У НИХ ВСЕГДА ОТСУТСТВУЮТ КРИСТАЛЛИЧЕСКИЕ ГРАНИ, ИХ ЗЕРНА ОКРУГЛЕНЫ И ПО ФОРМЕ НАПОМИНАЮТ ОКАТАННУЮ ГАЛЬКУ. ГЕОЛОГИ ПЫТАЮТСЯ ОБЪЯСНИТЬ ЭТУ ЗАГАДОЧНУЮ ОСОБЕННОСТЬ ТЕМ, ЧТО МИНЕРАЛЫ БЫЛИ ОПЛАВЛЕНЫ РАСКАЛЕННОЙ МАГМОЙ.

Вид на устье р.Мама, впадение в р.Витим ПЛАВЛЕНИЕ, КАК ИЗВЕСТНО, ВЕДЕТ К ПРЕВРАЩЕНИЮ МИНЕРАЛОВ В АМОРФНОЕ СТЕКЛО, ЛИШЕННОЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ. ОДНАКО НИКАКИХ СЛЕДОВ "ОСТЕКЛОВАНИЯ" И ПОТЕРИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ В ЭТИХ ОКРУГЛЫХ ЗЕРНАХ НИКОМУ НАЙТИ НЕ УДАЛОСЬ. ЗАТО КРИСТАЛЛЫ АЛМАЗА ПРЕДСТАВЛЕНЫ НА ОБОГАТИТЕЛЬНЫХ ФАБРИКАХ ЦЕЛЫМИ ГОРАМИ СВЕРКАЮЩИХ, ИДЕАЛЬНО ОБРАЗОВАННЫХ ОКТАЭДРОВ ИЛИ РОМБОДОДЕКАЭДРОВ С ОСТРЫМИ РЕБРАМИ, КОТОРЫМИ ТАК УДОБНО РЕЗАТЬ СТЕКЛО. А ВЕДЬ ОНИ, ПО СУЩЕСТВУЮЩИМ ВОЗЗРЕНИЯМ, ВОЗНИКЛИ В ГЛУБИНАХ МАНТИИ И БЫЛИ ВЫНЕСЕНЫ УЖЕ "В ГОТОВОМ ВИДЕ" ВМЕСТЕ С КИМБЕРЛИТОВОЙ МАГМОЙ С ГЛУБИНЫ 150-200 КИЛОМЕТРОВ. ЭТИ КРИСТАЛЛЫ ПОЧЕМУ-ТО СОХРАНИЛИСЬ, НЕСМОТРЯ НА ХРУПКОСТЬ, ОБИЛИЕ ВНУТРЕННИХ НАПРЯЖЕНИЙ И СПОСОБНОСТЬ ЛЕГКО РАСКАЛЫВАТЬСЯ ПО ОПРЕДЕЛЕННЫМ ПЛОСКОСТЯМ, ВЫХОДИТ, ЧТО КРИСТАЛЛЫ АЛМАЗА, ПРОШЕДШИЕ ВЕСЬМА ДЛИННЫЙ И ТЕРНИСТЫЙ ПУТЬ С РАСПЛАВЛЕННОЙ МАГМОЙ, ВЫГЛЯДЯТ ТАК, БУДТО ТОЛЬКО ЧТО СОШЛИ С ЗАВОДСКОГО КОНВЕЙЕРА. А ВОТ КРИСТАЛЛЫ ГРАНАТА, ЦИРКОНА, АПАТИТА И ДРУГИХ МИНЕРАЛОВ, ВРОДЕ БЫ ВЫДЕЛИВШИЕСЯ ИЗ РАСПЛАВА НЕПОСРЕДСТВЕННО В ТРУБКЕ, ЛИШЕНЫ СВОИХ ЗАКОННЫХ ГРАНЕЙ. ПОЧЕМУ ВОЗНИК ТАКОЙ ПАРАДОКС? (Источник Тайны возникновения месторождений алмазов и золота А. М. Портнов, профессор, доктор геолого-минералогических наук " Алмазы - сажа из труб преисподней " ) Как же образуется алмаз в Природе? .. Знаешь, спроси что-нибудь полегче!.. На эту тему я написал много сказов: "Алмазы от сырости", "Алмазы без кимберлитов", "Тайны речного дна", "Откуда берутся россыпи" и др. У меня есть сказ "Секретная закопушка"

Фото из сказа "Секретная закопушка" Если вкратце рассказать о происхождении ("генезисе" - офиц.феня) алмаза в Природе, то выглядит это так - ГРАФИТовые трубки пробиваются наверх, то есть снизу из-под земли идет наверх прорыв ГРАФИТовых трубок. Синтез алмаза происходит в графитовом глинопеске над ГРАФИТом ("кимберлит"ом - офиц.феня). Ведь известно из лабораторных исследований, что алмаз кристаллизуется (синтезируется) из углерода С. Это доказал еще Лавуазье. Происходит это при температуре +4С - это определено еще Виктором Шаубергером. "Кимберлит"овые басни про образование алмазов на огромных глубинах - это полный бред сивой кобылы. Читай "Алмазные лужи Иреляха", про то как советские геологи нашли алмазы на поверхности водяной трубки в 1954 году - этот факт попал даже в геологический отчет.

Фото из сказа "Алмазы без кимберлитов" Нигде в официальной "геологической" литературе сей факт не описан, так как это противоречит официальной версии про "коренные источники" - "кимберлиты". Также читай "Чудесные алмазы Иреляха".

Фото из сказа "Секретные ямки" "...В 1957 году я с техником Николаем Дойниковым, детально изучая геологическое строение и происхождение месторождения, заметил, что если двигаться от трубки "Мир", став к ней спиной, то сверху в своеобразных отложениях, сложенных песчано-глинистыми образованиями, содержатся галька и гравий, затем они исчезают и появляются песчанистые и глинисто-углистые алевролиты, то есть породы, представляющие собой окаменевшую пыль (алеврос - по латыни - пыль). Цвет породы - серый, темно-серый, до черного - в сильно углистых разностях. Затем мы входили в обширное поле желтого песка с гравием и галькой и, наконец, вновь вступали в зону развития таких же осадков, как и у трубки "Мир". Именно в них мы находили много пиропов и даже намывали алмазы. В желтых же песках пиропы не были обнаружены." (Из книги Файнштейна Г.Х. "За нами встают города",стр.167)

Природный графит, фон 30.

Что важного мы, Вольные Старатели, узнали из книги1988г. советского алмазника?.. Пока всего лишь две вещи - то, что алмазы как то связаны с углистыми породами (графит?), и выучили непонятное слово - АЛЕВРОЛИТ. Алевролит (рус. алевролит, англ. aleurolite, siltstone ; нем. Aleurolith m, Sandschiefer m) - Твердая горная порода, сцементированный алеврит. Более чем на 50% состоит из частиц размером 0,1-0,01 мм. Цвет серый, черный, красно-коричневый, зеленоватый. Структура массивная, слоистая, иногда линзовидные. Основные породообразующие материалы - кварц, глинистые минералы, цемент (карбонатный, карбонатно-глинистый и слюдистый). В Украине Алевролиты распространены в осадочных толщах фанерозоя. Сырье для производства керамзита, кирпича, цемента. СОСТАВ: ПО СОСТАВУ АЛЕВРОЛИТЫ ЗАНИМАЮТ ПРОМЕЖУТОЧНУЮ ПОЗИЦИЮ МЕЖДУ ПЕСЧАНИКАМИ И ГЛИНАМИ. Они содержат больше кремнезема, но меньше окисленного алюминия, калия и воды по сравнению с глиной, но не настолько богаты кремнеземом, как зрелые пески. Алевролиты очень редко состоят из чистого кварцевого алеврита. БОЛЬШИНСТВО АЛЕВРОЛИТОВ СОДЕРЖАТ В БОЛЬШОМ КОЛИЧЕСТВЕ СЛЮДУ ИЛИ СЛЮДИСТЫЕ ИЛИ ГЛИНИСТЫЕ МИНЕРАЛЫ И ХЛОРИТ. МОГУТ ПРИСУТСТВОВАТЬ ПОЛЕВЫЕ ШПАТЫ, И ОБЛОМКИ ПОРОД в больших отдельностях. Литература: Малая горная энциклопедия. В 3-х т. / Под ред. В. С. Белецкого. - Донецк: Донбасс, 2004. - ISBN 966-7804-14-3. Итак, Геологическая энциклопедия нам говорит четко - от греческого - aleuron - мука и lithos - камень, то есть - КАМЕННАЯ МУКА. Для всех вольных старателей термин - ГРАФИТовая МУКА подойдет?.. То есть АЛЕВРО - это МУКА, а не ПЫЛЬ!.. Тут Гришка опять сбрехал! .. Но он честно в своей книге сказал, что когда Одинцов Мих Мих его позвал, геолог он был нулевой. Геологом Гришка стал на Вилюе, его научил покойничек Бобков. В Сюльдюкаре. Читай "Алмазные птички Вилюя". Хорошо, насчет АЛЕВРОЛИТа хоть что-то уже ясно. Это сцементированный алеврит!.. А что такое АЛЕВРИТ? Читаем внимательнее: Алеврит состоит преимущественно из минеральных зерен (кварц, полевой шпат, слюда и другие) размером 0,01--0,1 мм, занимая промежуточное положение между глиной и песком (лёсс, ил, пыль). По преобладающим зёрнам отличают крупноалевритовые (0,05-0,1 мм) и мелкоалевритовые или тонкоалевритовые (0,01-0,05) разновидности алеврита. Алеврит выделен в отдельную осадочную породу по предложению советского петрографа А. Н. Заварицкого в 1930 году. Алеврит применяется в изготовлении цемента. В результате литификации алеврит превращается в алевролит. Литература "Геологический словарь", М:"Недра", 1978.

Так выглядит графитовое пятно в глинопесочной проплешине среди галечника. Могу предположить, что от графитового плотика водяной трубки просходит прорыв наверх графита среди глинопеска (глины). Так это или нет, сказать трудно, у Природы столько загадок, что даже стоя рядом на водяной трубке по сути не знаешь ничего. Я знаю, что я ничего не знаю (Сократ). Алеврит состоит преимущественно из минеральных зерен (кварц, полевой шпат, слюда и другие) размером 0,01--0,1 мм, занимая промежуточное положение между глиной и песком... Что мы видим?.. Так это одна и та же хрень - что АЛЕВРОЛит, что АЛЕВРит. Я же вам говорю, всюду где приставка ИТ - ожидай брехни. Я уже сам запутался, еще не разобравшись толком, где алевролит, а где алеВРИТ. Назвали бы уж сразу - брехунит!.. Такова вся "наука", грызть базальт "науки" можно бесконечно долго. Сегодня читаем - ЖЕОДА, утром проснулись - читай: ЖЕОДАН. Но у ученых брехогеологов есть отмазка!.. Литификация - окаменение. В результате литификации алеврит превращается в алевролит. Ловкий ход!.. Все это конечно прекрасная игра слов, но как этот самый АЛЕВРОЛит выглядит так сказать в Nature? .. (Природе). Да мне не жалко, смотри фотку - графитовые прослои в глинопеске водяных трубок в речном дне. Фото лично мое, октябрь 2013г.

На фото ГРАФИТовые прослои в глинопеске. глинисто-углистые " алевролит " ы??? Слушай, Природе все равно как ты их назовешь!.. Представим себе каменную графитовую муку, представили?.. Спечем в графитовом глинопесочке алмазный пирожок?.. Ага, еще бы кто рецептик подсказал... ладно, гляди далее:

Фото из сказа "Секретная закопушка" Процессы (возможного!) графитового "генезиса" алмаза проще смоделировать на примере маленькой графитовой водяной трубочки. Если правда, как показывает геологическая практика уральского алмазника Бурова А.П., что алмазы тяготеют к черному графитовому плотику, то возможно предположить, что семя алмаза находится в глине, или глинопеске, который в Природе перемешан с графитом. Точнее сказать, эти загадочные глинисто-углистые "алевролиты" и (возможно) являются той самой алмазной затравкой, из которой (возможно, так как неизвестно!) и кристаллизуются (синтезируются) алмазы. Вернемся к словам Файнштейна Г.Х. "...если двигаться от трубки "Мир", став к ней спиной, то сверху в своеобразных отложениях, сложенных песчано-глинистыми образованиями, содержатся галька и гравий, затем они исчезают и появляются песчанистые и глинисто-углистые алевролиты..." (Файнштейн) Природный синтез алмаза происходит при температуре +4С (По В.Шаубергеру), разумеется в глазах официалов - холодный синтез есть ПЕРВАЯ ЛЖЕНАУКА, и наш взгляд вольностарательский никогда не совпадет с официальной (брехливой) точкой зрения на рождение ("генезис") алмаза.

Гипотеза ледникового графитового "генезиса" по Аксаментову. Всем заслуженным паркетным "гиологам", и умникам интернетовым показываю ГРАФИТ. Графитовые не знаю как их назвать, "породы", скажем так, или точнее, прослои графита в глинопеске водяных трубок речного дна, графит прет снизу от графитового же плотика, а плотик водяной трубки под галечником на дне Витима не более метра, далее графит поступает в глинопесок и после криогенных процессов (замерзание и таяние льда или движение грунтовой, родниковой воды) и происходит кристаллизация (синтез) алмаза. Как то так, примерно, как точно, вам ни один эксперт не ответит. А официалы чаще всего врут намеренно, потому что им за это платят. Я же от сотоны не кормлюсь, что увидел, то заснял. Что именно делает Природа - лично мне не очень ясно. Могу только предположить, что на контакте графита и глинопеска рождается "эклогит", а по нашенски - РЖАВКА. На одном из октябрьских снимков я увидел кое-что интересное для нас, Вольных Старателей, вот, смотрите сами:

Ржавка ("эклогит" оф.) на контакте глинопеска и графита (обнаружено по фото, октябрь 2013)


Африканский снимок алмазного (самоцветного) ЖЕЛВАКа. В таких оранжево-красных желвачках африканские старатели часто находят алмазы(самоцветы). В идеале любой вольный алмазный старатель хочет найти подобные стяжения-жеоды (в них прячутся алмазы!..) красного или оранжево-красного цвета - официалы зовут их туманно и загадочно - ЭКЛОГИТ, ранее при ссср советские геологи их честно называли в геологических отчетах: "красно-оранжевые гранаты из трубки". Кристаллизуется ли в Природе алмаз напрямую из графита?.. (см начало статьи) - на этот вопрос я пока затрудняюсь ответить. Возможно да, но из "перидотит"ов, но мне они незнакомы, даже по фото. Когда будет больше исследовательского материала, тогда я смогу что-то путное сказать по прямому синтезу из графита. Судя по саянским алмазам Шестопалова это вполне возможно. Но фоток нет!.. Точнее есть одна из интернета, см ниже:
Кристаллизация алмаза из графита?.. Где-то на просторах сети я читал, что подобные алмазы шахтеры находили в слоях угля в Донецкой области в Украине. Но правда это или нет, я не знаю. Поэтому вопрос о кристаллизации алмаза напрямую из графита считаю дискуссионным. Впрочем, гляньте "Секретный уголек Чехии". По красно-оранжевым же гранатам ("эклогиты") все таки информации больше. Да и на моих фотоснимках исследовательских кое-что хоть немного, но есть. Если мне попадется все же углистый черный "перидотит", я обязательно его сфотографирую. А пока читайте "Загадочный алмазный желвак". Расчитываю, что теперь вы хоть немного просветились на предмет загадочных глинисто-углистых алевролитов, благодаря которым возможно идет синтез алмаза в Природе, и обязательно отыщете водяные трубки речного (морского,озерного) дна. Тема глинисто-углистых алевролитов очень объемная, будем постоянно к ней возвращаться, алмазные мои. На этом пока тема темных графитовых делишек исчерпана, если что-то еще накопаю по углисто-глинистым "алевролитам" - обязательно сообщу.

Фото из сказа "Секреты заповедного Утриша"

Как видите, и на Черном море тема графитовая тоже актуальна, по морскому старательству читайте морские сказы. Черная прибрежная полоса в галечных бухтах - поисковый признак на самоцветы. В данном сказе использован материал: А. М. Портнов, профессор, доктор геолого-минералогических наук "Алмазы - сажа из труб преисподней") .

ЭТО ТЕРРИТОРИЯ ВОЛЬНЫХ СТАРАТЕЛЕЙ! МЫ ИЩЕМ САМОЦВЕТЫ!.. ПОСОБНИЧЁК. СКАЗОЧНЫЙ ПОМОЩНИК УДАЧЛИВОГО СТАРАТЕЛЯ-ПОИСКОВИКА КАМНЕЙ-САМОЦВЕТОВ. "ПОСОБНИЧКОВ, ВИДНО, ИМЕЕТ ДА НАМ НЕ СКАЗЫВАЕТ" (П. П. Бажов, У старого рудника, гл. 3). http://staratel.far.ru/ Сайт Пособничек для всех Вольных Старателей!.. Всем, кому нужен диск с инфой по Вольному Старательству, звоните + 7 964 6592885 или смс на +7 964 3569913 Автор помогает своим читателям искать - УДАЛЕННОЕ ГЕОЛОГИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ по Вашим вопросам. E-mail:evg.aksamentov$yandex.ru При использовании этого текста большая просьба указывать прямую ссылку на http://staratel.far.ru Примечание: Автор не ведет добычные работы в РФ, вышеуказанная геологическая информация указана для ознакомления с практикой геологоразведочных вскрышных работ. Рекомендую все же применять Вольным Старателям данные знания за пределами РФ, чтобы не быть осужденным по 191-ой старательской статье. Обязательно прочитайте: Статья 191 УК РФ Незаконный оборот драгоценных металлов, природных драгоценных камней или жемчуга (редакция 2012 года).

Где растут алмазы

Первые эксперименты по синтезу алмаза в Институте геологии и геофизики СО АН СССР относятся к 1979 г. В результате многолетних исследований к настоящему времени в Институте геологии и минералогии им. В.С. Соболева СО РАН создана уникальная аппаратура высоких давлений БАРС (Беспрессовый Аппарат Разрезная Сфера) и комплекс оригинальных методов выращивания крупных кристаллов алмаза с заданными свойствами, разработаны экспериментально обоснованные модели генезиса природных алмазов. В ячейке высокого давления крошечный кристаллик алмаза постепенно растет и на седьмые сутки достигает массы 6 карат. Процесс роста идет в расплаве металлов при давлении 60 тыс. атмосфер и температуре 1500 °С. В результате получается алмаз максимально высокого качества, уникальные свойства которого можно использовать в современных устройствах для достижения рекордного уровня параметров приборов твердотельной электроники. Успехи ученых лаборатории процессов минералообразования в условиях высоких давлений ИГМ СО РАН позволили начать работы по практическому применению монокристаллов синтетического алмаза. Весьма актуальным является экспериментальное моделирование процессов природного алмазообразования. Специалисты лаборатории установили, что процессы зарождения и роста алмаза контролируются главным образом содержанием карбонатов, Н 2 О, СО 2 и щелочей в глубинных флюидах и расплавах. Впервые экспериментально доказано, что карбонаты могут быть не только средой кристаллизации, но и источником углерода алмаза...

Алмаз является самым удивительным и таинственным минералом. Он всегда привлекал внимание ученых и постепенно раскрывал свои тайны. Достаточно вспомнить истории о том, как в 1772 г. французский химик Лавуазье на глазах изумленной публики сжег алмаз, доказав, что он состоит из углерода; как в 1913 г. отец и сын Брегги расшифровали структуру этого минерала; как в «голубой земле» Южной Африки были найдены первые алмазы. А еще можно вспомнить о многочисленных попытках получения искусственных кристаллов, об экзотических опытах Муассана, синтезировавшего «алмазы», которые потом оказались карбидами. Конечно, это уже история, а мы поговорим об актуальных проблемах сегодняшней алмазной науки и немножко заглянем в завтра…

Броня крепка…

Анализ существующих методов получения алмаза показывает, что подавляющее большинство из них позволяет реализовать лишь синтез алмазной фазы в кратковременных процессах спонтанной кристаллизации. Одним из основных методов, обеспечивающих выращивание достаточно крупных монокристаллов, является метод температурного градиента, в котором алмаз растет из раствора углерода в расплаве металлов. Этот метод реализуется при давлениях 50-60 тыс. атмосфер в диапазоне температур 1400-1600 °С. Следовательно, для выращивания крупных кристаллов алмаза нужна прежде всего аппаратура, способная создавать такие условия.

Лидеры в данной области – корпорации Де Бирс, Сумитомо Электрик Индастриз и Дженерал Электрик используют для получения алмаза аппараты Belt , оснащенные мощным прессовым оборудованием массой до 200 т. В нашей стране аппаратуры такого класса не было.

В 1970-х гг. в Институте геологии и геофизики СО АН СССР по инициативе д. г. -м. н. профессора А. А. Годовикова и к. г. -м. н. И. Ю. Малиновского начались работы по созданию аппаратов высокого давления. Здесь уместно сделать отступление и сказать, что в это время бриллианты из первых крупных кристаллов синтетического алмаза, полученных учеными из Дженерал Электрик, уже были подарены английской королеве. В 1978 г. мы начали работы по тематике, связанной с синтезом алмазов. А в 1979 г. уже получили первые алмазы! Очень мелкие и черные. Посмотреть на первые алмазы приходили из всех лабораторий. Коллеги из европейской части страны нашей радости не понимали и говорили обидные слова про изобретение велосипеда и его квадратные колеса. Время шло, заводы тоннами производили алмазные порошки по «скорострельным» технологиям. Наши конструкторы Э. Н. Ран, Я. И. Шурин и В. Н. Чертаков под руководством И. Ю. Малиновского делали все новые и новые аппараты, а мы старались научить эти установки работать и учились сами.

В стране по-прежнему не было крупных синтетических алмазов. Лишь к концу 1980-х гг. в Новосибирске был создан многопуансонный аппарат «разрезная сфера», на котором впервые в России мы получили крупные кристаллы синтетического алмаза ювелирного качества массой до 1,5 карат (Пальянов и др., 1990). Для получения крупных кристаллов алмаза нужно было не только создать высокие давления и температуру, но и поддерживать эти параметры постоянными в течение нескольких дней и даже управлять при таких условиях сложнейшими процессами роста кристаллов.

В результате совместных исследований с сотрудниками Американского геммологического института (The Gemological Institute of America ) в авторитетном международном журнале Gems & Gemology появилась статья с многозначным названием: «Геммологические свойства русских кристаллов синтетического алмаза ювелирного качества» (Shigley et al. , 1993). После аттестации новосибирских кристаллов в ведущих научных центрах разработанная аппаратура и комплекс технологий были признаны и получили в зарубежной литературе соответствующие названия: БАРС-аппаратура , БАРС-технологии и БАРС-кристаллы . БАРС – это беспрессовый аппарат разрезная сфера.

Три тонны высококачественной специальной стали в каждой установке высокого давления – это наша броня, которая действительно крепка. За созданием современных БАРСов стоит огромный труд десятков сотрудников института, которые в разные годы внесли свой посильный вклад в эту разработку. Исследования в области создания синтетических алмазов неизменно поддерживались академиками Н. Л. Добрецовым и Н. В. Соболевым.

Современный БАРС совсем не похож на другие установки высокого давления. Он открывается подобно гигантской ракушке, а внутри, как жемчужина, расположен стальной шар диаметром 300 мм. Шар симметрично разрезан на одинаковые сегменты. Представьте, что вы разрезали арбуз на восемь равных частей. Получились такие трехгранные пирамидки со сферическим основанием. Теперь положили их на стол коркой вниз и срезали параллельно столу самое вкусное. Получили сегменты (или пуансоны ) первой ступени.

Если вы снова соберете эти сегменты в сферу, то внутри нее получится полость в форме октаэдра. В этой полости расположены пуансоны из карбида вольфрама (твердый сплав или победит) – только этот материал выдерживает огромные давления. Шесть пуансонов второй ступени собираются в форме октаэдра, внутри размещается ячейка высокого давления. Именно в ней происходят таинственные процессы зарождения и роста кристаллов алмаза. При достижении необходимых температуры и давления углерод, находящийся в наиболее горячей зоне (исходно это графит), растворяется в расплаве металлов и транспортируется в более холодную зону, куда помещен маленький затравочный кристаллик алмаза, который постепенно растет и на четвертые сутки достигает двух карат. Конечно, это только в том случае, если вы все сделали правильно.

Алмазы бывают разные

Хорошо известно, что алмаз имеет высочайшую твердость, которая обеспечивает традиционное его использование в технике. Но алмаз, кроме того, обладает и другими уникальными свойствами. Это ковалентный широкозонный полупроводник с теплопроводностью, в пять раз превышающей теплопроводность меди. Его характеризует высокая подвижность носителей тока, химическая, термическая и радиационная стойкость, а также способность легироваться электрически активными примесями. Мы привыкли к тому, что само слово «алмаз» автоматически подразумевает полезность всего, что с ним связано. И это совершенно справедливо.

Однако реальная картина выглядит гораздо сложнее и интереснее. Нас прежде всего интересует максимально высокий уровень качества, который условно назовем приборным. Именно на этом уровне алмаз должен проявить себя в современных приборах и устройствах как монокристалл, обладающий уникальными свойствами. Современная микроэлектроника на базе германия и кремния использует практически предельные возможности этих материалов. Поскольку алмаз является последним в ряду полупроводников с алмазным типом структуры, то именно он рассматривается как материал, на котором может быть достигнут рекордный уровень параметров приборов твердотельной электроники.

Массированный характер инвестиций в «алмазные» проекты за рубежом привел к впечатляющим результатам, однако эпоха широкого применения алмаза в высокотехнологических областях науки и техники пока еще не наступила. Одной из сдерживающих причин эксперты считают недостаточное качество как природных, так и синтетических алмазов. Уже давно ясно, что, даже лучшие из природных алмазов крайне неоднородны по дефектно-примесному составу и, соответственно, различны по свойствам.

Следовательно, задачи выращивания крупных высококачественных монокристаллов алмаза, исследование их реальной структуры и свойств весьма актуальны, поскольку в итоге направлены на получение алмазов с заданными свойствами для высокотехнологических применений. Следует подчеркнуть, что в таких индустриально развитых странах, как США и Япония, исследования и разработки по этому направлению проводятся в рамках крупных национальных программ. Да и у нас в стране ситуация в этой области постепенно улучшается.

О полезных и вредных дефектах… и немного о радуге

Итак, современной науке и технике нужны высококачественные кристаллы алмаза с различными полезными свойствами. Задача непростая, если учитывать наличие дефектов в кристаллах.

Дефектов много, они разные и условно делятся на две группы: «вредные» и «полезные». Например, включения – частички среды кристаллизации, которые кристалл захватил в процессе роста, дислокации – линейные нарушения структуры и планарные дефекты – микродвойники и дефекты упаковки. Это дефекты первой группы. Желательно, чтобы их в кристалле было как можно меньше или не было совсем.

Другая группа – это примесные и собственные дефекты , или дефектно-примесные центры. Это «полезные» дефекты, поскольку именно они определяют многие свойства кристаллов. Важно понять, какие центры отвечают за то или иное свойство, а затем создать в кристалле нужную концентрацию этих центров.

Задача сложнейшая, учитывая, что процесс роста кристаллов алмаза идет при давлении 60 тыс. атм. и температуре 1500 °С. Тем не менее мы уже научились получать кристаллы без включений, минимизировать плотность дислокаций и дефектов упаковки.

Высококачественный кристалл синтетического алмаза желтого цвета. Почему? Такое свойство обеспечивается примесью азота: достаточно 10-20 атомов азота на миллион атомов углерода. Азот «внедряется» из воздуха, который адсорбируется на исходных реактивах, и этого достаточно, чтобы 100 атомов углерода из миллиона были замещены атомами азота, а кристалл приобрел насыщенный желтый цвет. Но ведь природные алмазы бесцветны, хотя содержание примеси азота в них, как правило, на порядок выше, чем в синтетических. И снова вопрос – почему?

В зависимости от концентрации бора кристаллы будут голубые, синие или даже черные

Дело в том, что атомы азота могут образовывать в алмазе различные центры и, соответственно, свойства кристаллов будут изменяться, в том числе и их цветовые характеристики. Подробнее о строении многочисленных примесных центров в структуре алмаза можно прочитать в замечательной книге к. ф. -м. н. Е. В. Соболева «Тверже алмаза» (Соболев, 1989). А нам нужно разобраться, в каких условиях образуются те или иные центры, и только тогда можно будет получить кристаллы с заданными свойствами.

Добавим в среду кристаллизации титан, алюминий или цирконий. Это геттеры , они соединятся с азотом, и мы получим бесцветные алмазы. Это будут кристаллы не просто бесцветные, а безазотные. Именно такие кристаллы обладают наивысшей теплопроводностью (до 2000 Вт/ (м К)). Но среди природных алмазов безазотные кристаллы встречаются очень редко и далеко не в каждом месторождении.

Теперь в среду кристаллизации, содержащую геттеры, добавим бор. (В лабораторных условиях бор легко входит в структуру алмаза, когда нет азота.) В зависимости от концентрации бора кристаллы получатся голубого, синего или даже черного цвета. Такой алмаз является полупроводником с p-типом проводимости. В природе они встречаются еще реже, чем безазотные, а в отечественных месторождениях вообще не обнаружены.

Комплексные исследования процессов роста кристаллов алмаза и изучение их реальной структуры и свойств позволяют сегодня не только воспроизвести основные типы кристаллов, существующие в природе, но и получить алмазы с новыми свойствами, аналогов которым в природе не существует.

Например, в плане создания перспективной «алмазной электроники» чрезвычайно актуальна проблема получения кристаллов алмаза, легированных электрически активными примесями. Мы уже говорили о легировании алмаза бором и получении полупроводниковых алмазов с р-типом проводимости. Вместе с тем для применения алмазов в микроэлектронике необходимо решение ряда принципиальных проблем, одной из которых является получение полупроводниковых алмазов с n-типом проводимости.

Примеси фосфора или серы способны, в принципе, образовывать донорные центры в алмазе и давать n-тип . Однако «загнать» их в структуру алмаза очень непросто. Для этого нужно взять в качестве растворителей расплавы фосфора или серы. Кристаллы, полученные в расплаве фосфора, пока очень мелкие – первые сотни микрон. Зато цвет их – фиолетовый! Инфракрасная (ИК)-спектроскопия подтверждает, что фосфор вошел в структуру алмаза. Так что первый шаг сделан и в этом направлении.

Управлять свойствами алмаза можно не только в процессе роста. Так, с помощью тех же аппаратов БАРС в лаборатории разработаны методы термобарической обработки алмазов, направленные на изменение их реальной структуры и физических свойств. Фактически это отжиг при высоком давлении, однако условия такого отжига реализуются при рекордных параметрах – давлении 80 тыс. атмосфер и температуре до 2500 °С. Оказывается, что в таких условиях происходит не только трансформация дефектно-примесной структуры алмаза (например, агрегация одиночных атомов азота в пары и другие более сложные центры), но и аннигиляция более крупных неоднородностей структуры (например, дефектов упаковки).

Берем коричневые кристаллы алмаза, содержащие азот в форме одиночных замещающих атомов (С-центры); подвергаем воздействию нужной температуры и давления. Атомы азота должны образовать пары (А-центры), а алмазы – обесцветиться.Однако после экспериментов кристаллы стали не бесцветными, как ожидалось, а зеленоватыми. На ИК-спектрах действительно наблюдаются структуры, соответствующие А-центрам. Зеленый оттенок – это проявление никель-азотных центров. Алмаз растет из раствора углерода в расплаве железа и никеля. Оказывается, что никель тоже способен встраиваться в структуру алмаза и образовывать различные никель-азотные центры.

Так что отжиг под давлением оказался удачным методом воздействия на алмазы. Это направление успешно развивает к. г. -м. н. А.А. Калинин. Именно после его экспериментов по отжигу и облагораживанию природных алмазов с коричневой окраской многие увлеклись улучшением цветовых характеристик природных алмазов, забывая иногда указать в сертификате, что камень подвергался искусственным воздействиям.

В названии данного раздела речь шла о радуге. Оранжевые, желтые, зеленые, синие и фиолетовые алмазы уже были. Какие еще цвета остались? Красный. Берем исходный кристалл с небольшой концентрацией С-центров, облучаем электронами – создаем вакансионные центры и затем нагреваем до 200 °С. Получаем удивительный цвет … морской волны. Нагреваем тот же кристалл до 1000 °С в защитной атмосфере – получаем пурпурно-красный. Вот теперь в алмазной радуге есть все цвета.

Перспективы применения

В 1980-х гг. исследования по физике алмаза были невероятно популярны. Отдельные лаборатории и даже целые институты занимались алмазными проблемами; проходили регулярные всесоюзные алмазные конференции. Но в стране не было синтезировано кристаллов алмаза крупнее одного миллиметра. Всем нужны были хорошие крупные кристаллы, но уровень развития техники и технологий не позволял их выращивать. Сегодня совсем другая ситуация: через кристалл синтетического алмаза, полученный в нашей лаборатории, можно смотреть на соседний институт и прилегающие к нему территории. Значит, есть все основания для кооперации со специалистами из различных отраслей знаний, чтобы начать работы по применению монокристаллов синтетического алмаза в высокотехнологических сферах науки и техники.

Одно из перспективных направлений применения синтетического алмаза связано с рентгеновской оптикой. В этом смысле алмаз обладает рядом преимуществ: высокой теплопроводностью, прозрачностью в рентгеновском диапазоне и низким коэффициентом термического расширения

Основные направления проводимых исследований связаны с наиболее перспективными областями науки и техники, где использование алмаза вместо традиционных материалов позволит решить ряд проблем принципиального характера. Потенциальных областей применения у алмаза очень много, ограничимся лишь теми, где уже есть конкретные заделы. Так, из высококачественных кристаллов синтетического алмаза, полученных в нашей лаборатории, изготовлены алмазные наковальни, элементы рентгеновской оптики и детекторов ионизирующих излучений. Все эти изделия прошли успешные испытания в ведущих специализированных научных центрах.

Как там в недрах?

В науках о Земле алмаз рассматривается прежде всего как индикатор сверхглубинных геологических процессов (Добрецов и др., 2001). Во все времена происхождение природных алмазов было загадкой. Да и сегодня этот вопрос остается предметом очень бурных дискуссий, особенно на больших специализированных научных форумах.

Одно из важных направлений – применение алмаза для регистрации рентгеновского и гамма-излучений в радиологии и медицине. Здесь алмаз обладает такими достоинствами, как тканеэквивалентность, химическая стабильность, нетоксичность и малый размер детектора

Условия образования алмаза в мантии Земли большинство ученых оценивают следующим образом: давление порядка 50-60 тыс. атм., температура примерно 1000-1400 °С. Поэтому, если на вопрос: «Как там в недрах?», – вы ответите, что очень тесно и очень жарко, то, в принципе, не ошибетесь, хотя и сильно приукрасите существующие там условия.

Если по поводу температур и давления, необходимых для образования алмаза, у большинства специалистов нет существенных разногласий, то относительно состава среды кристаллизации и источника углерода ясности нет. Как говорится в таких случаях – вопрос дискуссионный. Подсказку дает сам природный алмаз. Этот сверхпрочный кристалл является уникальным контейнером, захватившим в процессе роста вещество мантии в виде включений. Минеральные включения в алмазах представлены в основном силикатами (гранат, оливин, пироксен) и сульфидами (пирротин, пентландит). Логично предположить, что алмаз кристаллизовался в силикатных или сульфидных расплавах. А может быть, в карбонатах? Ведь карбонаты тоже иногда встречаются в качестве включений в алмазах.

Начиная с работы академика В.С. Соболева (Соболев, 1960), проблема происхождения алмазов в природе обсуждается вместе с проблемой искусственного получения этого минерала. В 70-х гг. прошлого века, когда в лабораторных условиях уже научились создавать высокое давление и температуру (и, более того, умели получать алмазы, используя в качестве растворителей расплавы железа, никеля и кобальта), экспериментаторы решили помочь геологам разобраться в том, как же алмаз образуется в природе.

Классики в области высоких давлений работали аккуратно и честно. Поставили эксперименты в различных по составу расплавах; параметры – температуру, давление и длительность – выбрали такие же, как и в экспериментах с расплавами металлов, где заведомо получался алмаз. Не забыли положить и графит. Надавили, нагрели, проанализировали – нет алмаза! Повторили – опять нет. Проверили разные среды – снова алмаза нет! А что есть? Есть только метастабильный графит, образованный в области термодинамической стабильности алмаза.

Значит, углерод в этих средах при данных условиях растворяется – сказали классики и были абсолютно правы. Но нужно было сделать и следующий шаг: ответить на вопрос, почему так происходит? Экспериментаторы пришли к выводу, что есть две группы растворителей углерода: алмаз-продуцирующие и… (что делать) графит-продуцирующие. Тех, кто занимался технологическими проблемами синтеза алмаза, такое объяснение вполне устроило. А вот геологов – нет. Почему? Да потому, что алмаз в природе находится в основном в кимберлитах (карбонатно-силикатных породах), да и включения в алмазах, как уже отмечалось, состоят преимущественно из силикатов, оксидов и сульфидов.

«Не будем нервничать, – сказали экспериментаторы, – вот вам модель образования алмаза в природе… из расплава железа и никеля. Ведь сами говорили, что где-то там, в ядре Земли есть расплав металлов… и состав подходит, а главное – алмазы образуются». В общем, огорчились и те и другие, и продолжили заниматься каждый своим делом: одни – синтезировать алмазы, другие – искать их в природе. Говоря современным языком, на том этапе «интеграции» не получилось.

Тем не менее успехи были весьма значительные. Одно только открытие микроалмазов в гранатах и цирконах метаморфических пород Кокчетавского массива чего стоит (Sobolev, Shatsky, 1990). Экспериментаторы тоже не сидели сложа руки. Проблемой синтеза алмаза в неметаллических расплавах заинтересовались в Японии. Появились сообщения о кристаллизации алмаза в расплавах карбонатов при давлении 75 тыс. атм. и температуре около 2000 °С.

«Интересно, – сказали геологи, – но Р-Т -параметры (давление-температура) слишком высоки для природных процессов». К проблеме подключились научные коллективы из Англии, США, России (Черноголовка и Новосибирск), однако каждый пошел своим путем.

Учитывая, что одним из важнейших геологических факторов является время, мы снизили параметры и увеличили продолжительность экспериментов до нескольких часов. Алмаза нет. Еще увеличили длительность – и вот он, алмаз! И температура «всего» 1700 °С. «Температура выше, чем в природе», – сказали геологи. Что делать дальше? Добавили воды и еще увеличили длительность. Процесс кристаллизации алмаза пошел активнее. Да и состав в общем-то подходящий – щелочной карбонат, H 2 O и СО 2 (микровключения подобного состава все чаще и чаще стали находить в природных алмазах). Еще снизили давление и температуру, а время увеличили до 100 часов. И снова – алмаз! При давлении 57 тыс. атм. и температуре всего 1150 °С. Ура! Параметры как природные, и даже ниже, чем в металл-углеродных системах. Это был результат, достойный Nature , даже с учетом всех строгостей самого авторитетного в мире научного журнала (Pal’yanov et al. , 1999).

Об алмазе – самом загадочном минерале на Земле – читайте также в статье чл.-корр. РАН Н. П. Похиленко
(«Наука из первых рук», №4, 2007 г.)

Конечно, в природе все сложнее, чем в лаборатории (Похиленко, 2007). Экспериментальными исследованиями по карбонат-силикатным взаимодействиям нам удалось доказать, что карбонаты могут быть не только средой кристаллизации, но и источником углерода алмаза (Pal’yanov et al. , 2002). В результате в модельных системах удалось создать условия для совместной кристаллизации алмаза и других мантийных минералов, таких как пироп, оливин, пироксен и коэсит (Pal’yanov et al. , 2005).

Наука не стоит на месте. Появляются новые данные о составе микро- и даже нановключений в природных алмазах. В таких включениях были обнаружены не только карбонаты, но также и хлориды и еще масса всякой «экзотики». Возникают новые и новые модели образования алмаза. Нужно детально все проверить и разобраться в механизмах кристаллизации алмаза (Pal’yanov et al. , 2007).

Наша история о том, где растут алмазы подходит к концу, а история применения алмаза в высокотехнологических областях науки и техники только начинается. Да и в геологической науке осталось еще много загадок, связанных с происхождением этих великолепных кристаллов.

Литература

Добрецов Н. Л., Кирдяшкин А. Г., Кирдяшкин А. А. Глубинная геодинамика. Новосибирск: Изд-во СО РАН, филиал «Гео», 2001, 2-е изд., 409 с.

Пальянов Ю. Н., Малиновский И. Ю., Борздов Ю. М., Хохряков А. Ф., Чепуров А. И., Годовиков А. А., Соболев Н. В. Выращивание крупных кристаллов алмаза на беспрессовых аппаратах типа «разрезная сфера» // Докл. АН СССР. 1990. Т. 315. №5. С.1221-1224.

Похиленко Н. П. Алмазный путь длиною в три миллиарда лет. // Наука из первых рук. 2007. № 4 (16). С. 28-39.

Соболев Е. В. . Тверже алмаза. Новосибирск: Наука, 1989. 190 с.

Соболев В. С. Условия образования месторождений алмазов // Геология и геофизика. 1960. № 1. С. 7-22.

Pal’yanov Yu. N., Sokol A. G., Borzdov Yu. M., Khokhryakov A. F., Sobolev N. V. Diamond formation from mantle carbonate fluids // Nature. V. 400. 29 July 1999. P. 417-418

Pal’yanov Yu. N., Sokol A. G., Borzdov Yu. M., Khokhryakov A. F., Sobolev N. V. Diamond formation through carbonate-silicate interaction // Amer. Mineral. 2002. V. 87. №7. P. 1009-1013

Pal’yanov Yu. N., Sokol A. G., Tomilenko A. A., Sobolev N. V. Conditions of diamond formation through carbonate-silicate interaction. Eur. J. Mineralogy. 2005. V. 17. P. 207-214

Palyanov Yu. N., Shatsky V. S., Sobolev N. V., Sokol A. G. The role of mantle ultrapotassic fluids in diamond formation // roc. Nat. Acad. Sci. USA. 2007. V. 104. P. 9122-9127

Shigley J. E., Fritsch E., Koivula J. I., Sobolev N. V., Malinovsky I. Yu., Pal’yanov Yu. N. The gemological properties of Russian gem-quality synthetic yellow diamonds // Gems & Gemology. 1993. V. 29. P. 228-248

Sobolev N. V., Shatsky V. S. Diamond inclusions in garnets from metamorphic rocks // Nature. 1990. V. 343. P. 742-746

Алмаз (от араб. ألماس, ’almās, тур. elmas, которое идёт через арабск. из др.-греч. ἀδάμας - «несокрушимый») — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Химическая формула: С.

Алмаз имеет такой же химический состав, как и графит. Но по внешним признакам от него резко отличается. Это отличие объясняется различным расположением атомов углерода в кристаллической решетке: в алмазе они размещены в тетра-эдрической структуре и имеют прочную связь по всем направлениям. Удельный вес 3,48-3,55 г/см 3 . Алмаз - камень с необычным блеском, игрой цветов, внутренним огнем. Блеск у алмаза сильный - алмазный. Алмаз очень твердый - «царь всех минералов».

По шкале Мооса твердость 10. По твердости он не уступает ни одному из известных минералов. Алмаз является «чемпионом твердости»: он в 1000 раз тверже кварца, в 150 раз тверже корунда. Может быть, поэтому древние греки считали алмаз талисманом власти. Алмаз устойчив к кислотам, нагреванию. Это единственный минерал, оставляющий царапину на корунде. По этому признаку отличается от сходных с ним минералов - горного хрусталя, топаза и др. Алмаз очень твердый, но в то же время хрупкий. Он легко раскалывается по плоскостям спайности. Спайность совершенная но граням октаэдра. Это свойство алмаза используют ювелиры при его обработке. Найден новый минерал, обладающий большой твердостью, «брат» алмаза - якутит.

Ни один драгоценный камень не имеет столько оттенков, как алмаз: бесцветные, белые, голубые, зеленые, желтоватые, розовые, красноватые, коричневатые, дымчато-серые тона; нередко прозрачный.

Встречается алмаз большей частью в виде отдельных кристаллов - октаэдров с искривленными гранями, по внешней форме приближающихся к шару. Размеры кристаллов обычно небольшие. Кристаллизуется в кубической сингонии.

Отличительные признаки . Характерными особенностями для алмаза являются сильный алмазный плеск и высокая твердость - оставляет царапину на корунде. Если металлическим алюминием чертить по смоченной поверхности алмаза, алюминий следов не оставляет.

Разновидности и фото алмаза

  1. Бриллиант - искусственно обработанный алмаз, имеющий 57 граней. Бриллиант рассеивает солнечный свет подобно капелькам дождя, образующим радугу, бриллиант - самый сияющий драгоценный камень.
  2. Борт -неправильные мелкозернистые сростки.
  3. Баллас - шаровидный алмаз, радиально-лучистого строения.
  4. Карбонадо - черного, серого цвета, плотный или крупнозернистый алмаз.
  5. Якутит - алмаз тёмного цвета, с многочисленными включениями и максимальной твердостью.

Бесцветный алмаз, Катока, Ангола Борт Сферический баллас Черный карбонадо

Происхождение алмаза

Месторождения алмаза генетически связаны с ультраосновными (дуниты, перидотиты) и основными (диабазы) магматическими породами и с серпентинитами, возникшими в результате химического изменения ультраосновных и основных пород. Алмаз образуется в условиях высокого давления и высокой температуры, поэтому месторождения его приурочены к вулканическим воронкам взрыва. Алмаз образуется при давлении более 5 МПа и температуре около 2000° С.

Образование алмазов тесно связано с тектоническими процессами. При этом по возникшим в земной коре из больших глубин поднималась огненно-жидкая масса, так называемая ультраосновная магма. Ее иногда называют кимберлитовой. По мере поднятия кимберлитовая магма охлаждалась и это привело к отделению растворенных летучих соединений (газы, водяной пар). Освобождающиеся водяной пар и газы вызывали сильные взрывы, в результате чего в земной коре возникали вертикальные колодцеобразные цилиндрические отверстия - кимберлитовые трубки. Эти трубки заполнялись раздробленными породами, образовавшимися при взрыве. Затем по воронке, наполненной обломочным материалом, поднималась кимберлитовая магма, которая занимала пустоты между обломками и цементировала их.

Алмазы, как предполагают, выделились в основном в твердом виде, когда кимберлитовая магма залегали еще на глубине, а затем они были принесены течением магмы в кимберлитовые трубки. Алмазы содержат лишь те трубки, корни которых достигают алмазоносного слоя. Алмазы образуются на глубинах около 200 км.

Находки алмазов известны не только на платформах (на равнинах), но и в горных областях: на Урале, в Аппалачах, Каскадных горах, Сьерра-Неваде, на о. Калимантан и в других районах.

Алмазы обнаружены в метеоритах. Алмаз также образуется при взрывах, сопровождающих падение огромных метеоритов (метеоритный кратер «Каньон Дьявола», Аризона, США).

Встречается среди основных и ультраосновных магматических пород, среди серпентинитов (змеевиков); также в древних (конгломераты, песчаники) и в молодых россыпях.

Спутники . В коренных месторождениях: серпентин, оливин, авгит, графит, магнетит, хромит, ильменит, тальк. В россыпях: кварц, платина, золото, магнетит, ильменит, гематит], топаз, касситерит, корунд. Постоянным спутником алмаза является пироп - минерал вишневого цвета. Пироп чаще встречается, чем алмаз, и служит хорошим «ориентиром» при поисках месторождений алмазов.

Применение алмаза

Алмазы подразделяются на ювелирные и технические. К первым относятся прозрачные, бесцветные или слабо окрашенные разности более или менее крупных размеров; к техническим - тёмноокраминные разности и алмазы мелких размеров. В месторождениях, как правило, преобладают технические алмазы, реже встречаются ювелирные сорта.

Алмаз называют богатырем техники. До 80% добываемых во всем мире алмазов используется в промышленности. Алмазы применяются в электротехнической, Радиоэлектронной и приборостроительной промышленности. Алмазы используются в качестве детекторов ядерного излучения, в счетчиках быстрых частиц, медицинских счетчиках. Они находят применение при космических исследованиях, при изучении глубинного строения Земли. Общеизвестно применение алмаза для резания стекла. Алмазом в 1 карат (карат равен 0,2 г) можно разрезать оконное стекло длиной в 2500 км.

Алмаз, сравнимый с прозрачностью родниковой воды, переливается всеми цветами радуги и применяется и качестве украшений (бриллиант). Он ценится дороже молота. На стоимость алмаза величиной с абрикос можно построить целый завод. Высокая цена алмаза объяснится не столько его высокой твердостью, сильным блеском, красивой «игрой» цветов, сколько редкостью нахождения. Крупные месторождения встречаются редко Даже в богатых месторождениях в одном кубическом метре породы обнаруживается 3-6 мелких зерен алмаза.

В среднем из 100 000 т породы извлекается всего лишь около 5 кг алмазов. Соотношение - 20 миллионов к 1.

История алмаза насчитывает более пяти тысяч лет. Именитые алмазы и другие драгоценные камни являются свидетелями власти, безмерной пышности царских нарядов, народного горя, страданий. Алмазы украшали короны и другие атрибуты власти фараонов, шахов и королей.

Многие из крупных алмазов имеют кровавые истории, полные тайн, трагедий, кошмарных преступлений, применяемых мимолетной алчной радостью в мире наживы.

Месторождения алмазов

«Алмазным континентом» является Африка. Основные алмазодобывающие страны им африканской земле: Республика Заир, занимающая первое место в мире по добыче технических алмазов, Танзания, Гана, ЮАР (страной алмазов является Намибия, занимающая первое место в мире по добыче ювелирных алмазов, незаконно оккупированная ЮАР), Ангола, Гвинея и другие. Одними из самых богатых в Африке и в мире являются месторождения алмазов Центрально-Африканской Империи Затем идут страны Южной Америки: Бразилия, Венесуэла, Гайана и страны Азии: Индия, Индонезия.

В Южной Африке в 1905 г. были найдены два гигантских алмаза. Самый крупный из них «Куллинан» (по имени владельца рудника) весом 3106 каратов (величиной с кулак), второй - «Эксцельсиор» - 971,5 карата. Оба алмаза были распилены и обработаны в менее крупные бриллианты и распроданы. «Куллинан» дал 105 бриллиантов после распиловки. Два из них - самые крупные - вставлены в королевский скипетр и имперскую корону Англии. В Сьерра-Леоне в районе Энге-ма (Западная Африка) найден крупный алмаз величиною с небольшое куриное яйцо. Весит он 968,9 карата (почти 200 г). Длина его - 40 мм. Назвали его «Звезда Сьерра-Леоне». В международном списке редких по величине алмазов он занимает третье место. Алмаз «Звезда Сьерра-Леоне» распилен на 11 отдельных камней высокой цены. По качеству сьерра-леонийские алмазы одни из лучших. Самый крупный индийский алмаз «Великий Могол» - 794 карата. Крупные алмазы «Орлов» (194,8 карата) и «Кох-и-нур» (109 каратов) были найдены в Индии.

Самый крупный плоский алмаз имеет площадь 7,5 см 2 . Он вмонтирован в золотой браслет; хранится в алмазном фонде России. Один из самых крупных светло-синих алмазов в 42,27 карата найден в Южно-Африканской Республике (провинция Оранжевая).

Самый первый алмаз в России нашел 14-летний крепостной Павел Попов на Урале в XIX веке. После такой драгоценной находки почти 100 лет геологи исследовали Урал и Сибирь, пока геолог Лариса Попугаева в июне 1954 года не отыскала в холодной Якутии первую кимберлитовую трубку «Зарница». Имя Ларисы Попугаевой носит один алмаз весом в 29,4 карата.

Якутский алмаз чистый и прозрачный, будто впитал в себя красоту северного сияния крепость якутского мороза. На территории Якутии обнаружены порядка десяти кимберлитовых трубок: «Айхал», «Зарница», «Интернациональная», «Мир», крупнейшая в мире «Удачная», «Юбилейная». Один из крупных советских алмазов «Мария» весит 105,98 карата. Алмаз весом в 342,5 карата найден в трубке «Мир» 23 декабря 1980 года и назван в честь XVII съезда КПСС, который проходил спустя 3 месяца после находки. В современной России выделяются две находки, сделанные в 2003 году в трубке «Удачная»: лимонного и табачного цвета алмазы, весом 301,55 и 232,7 карата, соответственно.

Кимберлитовые трубки и приуроченные к ним месторождения алмазов, имеются в России не только в Якутии. Открытием месторождений алмазов здесь послужило обнаружение кимберлитовой трубки «Поморская» в 1980 году, которая помимо еще других 5 трубок («Пионерская», «Карпинского-1″, Карпинского-2», «Архангельская» и «им. Ломоносова») входит в состав крупнейшего месторождения россыпных алмазов в Европейской части России — имени М.В. Ломоносова. Здесь крупнейшим за всю историю разработки месторождения является алмаз весом 50,1 карата. В Архангельской области помимо месторождения Ломоносова, в промышленной эксплуатации находится месторождение имени В.П. Гриба (Верхотинское).

Одним из перспективных алмазоносных районов в России является Иркутская область, в которой поиски драгоценных камней прекратили в 1980 году из-за недостаточного финансирования и отрицательных результатов, полученных в южной части региона.

Рядом ученных в 2015 году проведен анализ, позволяющий предполагать, что Оренбургская область имеет перспективы на наличие алмазоносных районов.

Сегодняшняя статья посвящена самому любимому среди женщин минералу на земле – алмазу. Сегодня мы рассмотрим такие интересные вопросы, касающиеся бриллиантов как: физические свойства алмаза, процесс образования этого минерала, где находят алмазы, как происходит огранка и какой же самый крупный алмаз в мире. Итак, приступим.

Как образовываются алмазы?
Большинство природных алмазов образовываются при сверх высоком давлении и температуре, которые происходят глубоко в мантии Земли на глубине от 140 до 190 километров. При этом из углеродосодержащих минералов начинает образовываться алмаз, рост которого происходит в течение периода с 1 млрд. до 3,3 млрд. лет. За последнее время
ученые научились выращивать алмазы в лабораторных условиях.

Физические свойства алмаза.
В переводе с древнегреческого языка слово «алмаз» означает нерушимый. Алмаз является самым твердым природным веществом на Земле, он в 58 раз прочнее, чем следующий самый твердый минерал - корунд, из которого состоят рубины и сапфиры. Также этот минерал обладает самой высокой теплопроводностью среди всех твердых веществ.
Но если алмаз кинуть в печь то он сгорит без следа, не останется даже пепла, при этом выделится лишь немного углекислого газа. Однако если убрать кислород, а температуру повысить до 4000С, то его можно расплавить до жидкого состояния.
Алмазы также обладают интересными оптическими свойствами. Оказывается под воздействием ультрафиолетовых, катодных и рентгеновских лучей алмазы светятся или люминесцируют.

Где находят алмазы?
Алмазы попадают на поверхность Земли с вулканическими извержениями. Породы содержание алмазы называются кимберлитовыми. Часто алмазы вымывает из горных пород, при этом бриллианты концентрируются в руслах рек и местах впадения в океан. Странами в которых сконцентрировано наибольшее количество месторождений алмазов являются Россия, Ботсвана, Канада, ЮАР, Ангола и Намибия.

Огранка алмазов.
Как вы думаете, чем отличается алмаз от бриллианта? Не буду томить, алмаз это минерал выкопанный из породы в первозданной форме и виде, а бриллиант это тот же камень, но уже прошедший искусную огранку.
Основными видами огранки являются:
Круглая (насчитывает стандартное количество граней -57)
Фантазийная (к ней относятся овальная форма, груша, радиант, принцесса и др.)

При выборе формы огранки отталкиваются от первоначальной формы алмаза. Потеря веса алмаза при огранке составляет в среднем от 55 до 70% от первоначального. Чтобы бриллиант имел максимальное количество карат, огранщики стараются свести к минимуму потери веса.

Какой самый крупный алмаз в мире?
Самый крупный алмаз в мире был найден в Южной Африке и назван Куллинан. Он весил 3,106.75 карат, однако его разрезали на части. Самая крупная – Большая Звезда Африки (Куллинан I) весом в 530.2 карата, Малая Звезда Африки (Куллинан II) – 317.4 карат и еще 104 бриллианта безупречной прозрачности и цвета. В настоящее время Малая Звезда Африки является украшением британской короны (на фото). Большая Звезда Африки украшает королевский королевский скипетр (на фото выше).

Документально Большая Звезда Африки не самый крупный бриллиант в мире. Безымянный Браун, алмаз весом в 700 карат после огранки похудел до 545карат, но этого достаточно для того чтобы выбороть первое место среди самых больших бриллиантов в мире. Понадобилось 3 гола работы над огранкой и штат из специалистов чтобы закончить этот шедевр.


Качество алмазов.
Оказывается не все алмазы прозрачные. Различные примеси придают алмазам синие, красные, оранжевые, желтые, зеленые и даже черные цвета. Яркие синие, зеленые и розовые алмазы являются очень редкими, однако они не самые дорогостоящие. Самый дорогой алмаз – красный.
Нам кажется, что алмазы очень редки, труднодобываемы и поэтому их цена так высока. На самом деле алмазы на Земле в изобилии, каждый год добываются многие тысячи. 80% от их количества не подходят для украшений и используются в промышленности или дешевых кольцах.


Знаменитый бриллиант Голубое сердце, который носила Кейт Уинслет в фильме Титаник. Он был найден в южноафриканской шахте Премьер. Этот бриллинт весит 30,82 карат и был огранен в Париже в 1909 году. С тех пор его многократно перепродавали. Он был во владении ювелирного дома Картье и многих других ценителей. В данный момент Голубое сердце находится в США в бриллиантовой коллекции одного из музеев. Надеемся наша статья помогла вам узнать что-то новое и интересное про алмазы и бриллианты нашей земли. © Inga Korneshova. Статья написана специально для сайта сайт

Для справки: 1 грамм = 5 карат

Точное время открытия алмаза на данный момент не установлено. Все дело в том, что вид необработанных минералов достаточно тривиален и не привлекает особого внимания. Первые упоминания об индийских камнях относятся еще к III тысячелетию до н.э., но использовать их в ювелирных украшениях начали лишь около 500 лет назад, после того, как мастера освоили методы бриллиантовой огранки.

В России особую любовь к ним питала Екатерина II, во время ее правления в обиход вошло понятие бриллианта, как синонима богатства и роскоши.

Название минерала на разных языках имеет схожее звучание и значение. Арабы именовали его «алмас», то есть «самый твердый», греки — «адамас», что значит «несокрушимый». Русское слово «алмаз» было введено в оборот в середине XV века путешественником Афанасием Никитиным в книге «Хождение за три моря».

Физико-химические свойства алмаза

Алмазы - прозрачные бесцветные минералы, реже имеют розовые и желтые оттенки, обладают ярким блеском и высокими показателями светопреломления.

Минерал состоит из атомов углерода, равноудаленных друг от друга на расстояние 0,15 нанометров. Атомы образуют кубическую кристаллическую решетку, обеспечивающую алмазу самую высокую твердость по шкале Мооса - 10 единиц. Однако, из-за совершенной спайности кристаллы очень хрупки, а ошибочное отождествление понятий твердости и хрупкости часто влекло за собой разрушение ценных камней.

Так была уничтожена коллекция бриллиантов французского герцога Карла Смелого, который вел междоусобную войну с королем. Наемники Людовика XI, желая проверить подлинность камней с помощью молота, превратили их в порошок.

Образование и месторождения алмаза

Трудно поверить, но алмаз и графит являются практически братьями-близнецами. И тот и другой представляют собой чистый углерод. Для того, чтобы графит кристаллизовался необходимы особые условия: давление 45 000–60 000 атмосфер и температура 900–1300 °С, которые обеспечиваются на глубине 80–150 км под землей. Вместе с вулканической магмой камни выбрасываются из земных недр, формируя при этом коренные месторождения - .

Ученым известны также минералы метеоритного происхождения, образующиеся при столкновении космического тела с поверхностью Земли. Температура в момент удара достигает 3000 °С, а давление до 100 ГПа, в этих условиях формируется алмазоносная импактная порода. «Неземные» камни были обнаружены в Большом Каньоне в США в осколках метеорита, упавшего около 30 тысяч лет назад. В Якутии тоже имеется свое подобное месторождение - Попигайская астроблема, образовавшаяся 35 млн. лет назад.

Разработка импактитов является нерентабельной из-за малого размера кристаллов, поэтому промышленная добыча ведется традиционными методами на «земных» месторождениях, которые встречаются практически на всех континентах, а наиболее крупные расположены в Южной Америке (Бразилия) , России (Якутия) , Африке (Ботсвана, Ангола) .

На данный момент признанным монополистом на рынке является американская компания , контролирующая 75% мировой добычи и оборота алмазов. Во всем мире высоко ценятся и пользуются большим спросом камни российского производства. Основной алмазодобытчик России - компания «Алроса», добывающая 95% алмазов в стране.

Природные фантазийные бриллианты компании

Помимо качественных бесцветных камней при удачном стечении обстоятельств иногда удается добыть фантазийные ярко-желтые, ярко-розовые и голубые алмазы, составляющие всего 1% от общего объема. Еще более редкими являются красные камни - алмазодобывающая компания Rio Tinto их на своем тендере всего несколько штук в год. Самыми ценными же среди цветных алмазов являются фиолетовые камни - они настолько уникальны, что цена их нередко превышает 1 миллион долларов за карат.

Отдельного внимания заслуживают . Являясь долгое время фактически отходами при добыче классически бесцветных камней, сегодня черные алмазы, и, как следствие, бриллианты задают собственный тренд в украшениях. Ювелирные изделия с черными бриллиантами зачастую становятся выбором тех, кто хочет выделиться из толпы и не любит идти на поводу у общепринятых канонов и правил.

Искусственные алмазы

Научные опыты по созданию искусственных алмазов начались в 1797 году, но первый минерал, выращенный в лаборатории, и метод его получения был запатентован американской компанией General Electric лишь в 1956 году. С тех пор технологии продвинулись настолько далеко, что сегодня многие искусственно выращенные камни совершенно неотличимы от природных без специального оборудования и большого опыта, а обычные способы распознания подделки работают далеко не всегда.

Однако, насыщение рынка такими камнями сдерживается законом спроса и предложения, так как падение цен на бриллианты невыгодно ни добытчикам натуральных ни производителям искусственных камней.

Известные аналоги природных алмазов

Стоит упомянуть наиболее распространенные камни, которые используются в украшениях вместо бриллиантов. Во-первых, это всем известные , впервые синтезированные в российском институте ФИАН. Во-вторых, это муассаниты, которые особенно сложно отличить от настоящего драгоценного камня, не имея нужных для этого знаний.

Кроме того, сравнительно недавно появились алмазы ASHA, поверхность которых покрыта слоем атомов углерода (из которого и состоит природный минерал) , что фактически делает подобный камень композитным материалом и при этом дарит ему больше блеска и «огня» по сравнению с теми же фианитами.

Отдельно стоит упомянуть ВДВТ (высокое давление, высокая температура) алмазы. Этот метод был разработан в 1950-е годы и фактически полученные в результате обработки камни являются абсолютно натуральными. Суть метода понять не сложно, если вспомнить об условиях формирования камня. В природе алмаз формируется под влиянием колоссального давления и температуры в течение определенного времени. Иногда такие камни попадают на поверхность раньше времени, представляя собой по сути «полуфабрикат». И для того, чтобы превратить его в красивый сверкающий алмаз, который в последствии будет огранен и инкрустирован, камень повторно подвергают воздействию высокого давления и высокой температуры, аналогичных природным, но уже в лаборатории. Такой алмаз остается полностью натуральным, но как бы «доработанным» людьми.

Наглядное сравнение настоящего бриллианта (в центре) с его аналогами: 1 - фианит (кубический цирконий) , 2 - муассанит, 3- бриллиант ASHA, 4 -лабораторно выращенный бриллиант

Магические и целебные свойства алмаза

Йоги при помощи алмаза лечат психические заболевания, сердце, почки, очищают печень. Воины носили перстни с бриллиантом, веря, что он придаст им силы духа и сделает непобедимыми. Кроме того, камень приносит владельцу счастье и оберегает от скверных привычек и поступков.

Кому подходит алмаз и бриллиант

Алмаз, как и бриллиант, - это камень смелых и решительных. Он требует к себе уважительного отношения и может оказаться бесполезным в руках слабого, неуверенного человека.

Алмаз - главный зодиакальный камень, управляющий всем кругом. Талисман с ним или с ограненным бриллиантом в первую очередь подходит Овнам, во-вторую - Львам. Хотя и другим знакам он не противопоказан.