Что за металл серебро. Строение атома серебра. Зеркальное отражение серебра

Быстрый поиск по тексту

Благородный металл белого цвета

Серебро относится к группе древнейших металлов. Человечеству оно знакомо уже около 6 тысяч лет. Тогда оно было найдено на территории Передней Азии. Такое раннее знакомство человека с серебром обусловлено нахождением серебра в виде самородков, иногда достаточно крупного размера. Его не приходилось добывать из руды.

Существует легенда о первом обнаружении металла. Во время охоты егерь, что служил при королевском дворе привязал коня и надолго его оставил одного. Конь долгое время бил копытом по одному и тому же месту. В итоге, раскопал небольшую яму из которой виднелся белый кусок непонятного происхождения. События происходили 968 году, при короле Оттоне 1 Великом, который на том месте заложил первый рудник.

Долгое время считалось, что белый металл дороже золота. Самым древним местом добычи серебра считается Сардиния, где металл был известен с эпохи энеолита.

Латинское название металла – аргентум происходит от индоевропейского корня.

Химический состав

В периодической системе Менделеева имеет название Argentum (Ag), атомный номер – 47, атомная масса – 107,8682, состоит из двух изотопов: 107Ag, 109Ag, период – 5, группа – 11.

Аргентум не растворяется и не реагирует с другими элементами. Исключение составляют:

  • азотная кислота;
  • хлорное железо;
  • ртуть (с образованием амальгамы);

В соляной и серной кислотах серебро не растворяется, однако, при определенных условиях это может произойти. Серебро может раствориться в концентрате серной кислоты под воздействием высоких температур. А также в условиях присутствия свободного кислорода в соляной кислоте.

Серебро не поддается воздействию кислорода.

Структура кристаллической решетки серебра – кубическая гранецентрированная. Параметры – 486 Å.

Физические свойства серебра

Серебро обладает высокой пластичностью, что позволяет раскатать его до толщины в 0,00025 мм. За счет своего цвета и блеска имеет хорошую склонность к полировке.

Основные физические свойства аргентума:

– ρ = 10,491 г/см3;

  • Температура плавления – 961,93 ᵒС;
  • Температура кипения – 2167 ᵒС;
  • Теплопроводность – 407,79 Вт/м×К;
  • Твердость по шкале Мооса – 2,5-3

Серебро широко применяется во многих сферах промышленности благодаря своей электрической и теплопроводности.

Его применение незаменимо в изготовлении контактов для электротехники, для спаивания различных металлов.

Среди предметов, без которых современный человек не может обойтись – аккумуляторы для различных устройств. Они также изготавливаются при помощи аргентума с добавлением цинка и кадмия.

Металл используется как напыление различных поверхностей. Например, при изготовлении зеркал.

В промышленности применяется как катализатор, например, при изготовлении формальдегида метанола. Также как катализатор используется для противогазовых фильтров.

Йодид аргентума – инструмента управления погодой, если нужно «раздвинуть тучи».

Хлорид аргентума необходим для производства инфракрасной оптики.

Кроме того, металл имеет большой спрос в медицине, в изготовлении монет, в ювелирном деле.

Добыча серебра

Ученые сходятся во мнении, что добыча белого драгоценного металла в России началась при Петре I. Добыча велась на Урале и на Алтае.

Сегодня добывают драгоценный металл более, чем в 20 регионах нашей страны. Наибольшие запасы находятся в Магаданской области (19,4 тыс. тонн), в Красноярском крае (16,2 тыс. тонн), в Читинской области (16 тыс. тонн), в Республике Саха (10,1 тыс. тонн), в Республике Бурятия (9 тыс. тонн).

Примерно 80% от добытого серебра использует промышленность, остальное – ювелирная. Наиболее популярными методами добычи, которые используют по всему миру являются цианирование и амальгамирование.

По примерным подсчетам общее количество серебра в мире составляет 512 тонн. Лидерами по запасам являются:

  • Перу;
  • Чили;
  • Польша;
  • Австралия.

Искусственное серебро

Запасы аргентума на Земле, которые доступны для добычи не так богаты, поэтому есть смысл искусственно синтезировать этот драгоценный металл. В отличие от , существуют как лабораторные способы, так и способы домашнего синтеза кристаллов аргентума.

Серебро можно синтезировать, вырастив кристалл аргентума. Такой металл будет аналогом настоящего. Вырастить кристалл можно методом электролиза. В результате, получится чистое серебро. По своим физическим свойствам металл, полученный таким способом практически идентичен природному.

Открытие. Добыча

Названия от слова серебро

Возможна нехватка серебра и рост цен

История столового серебра

Происхождение названия

Нахождение в природе

Физические свойства

Самородок серебра

Химические свойства

Биохимия

Применение

Серебряная вода

В медицине

Физиологическое действие

Биологическая активность

Столовое серебро

Благотворное влияние на организм человека

Свойства

Уход за предметами торговли

Чистка и очистка

Уход за столовыми приборами

Соединения

Соединения одновалентного серебра

Неорганические соединения

Координационные соединения

Соединения двухвалентного серебра

Неорганические соединения

Координационные соединения

Соединения трехвалентного серебра

В Российской Федерации первое Серебро было добыто 1704 году на Нерчинских рудниках Забайкалья. Некоторое количество добывалось на Алтае. Лишь в середине XX века освоены многочисленные месторождения на Дальнем Востоке.

В 2008 году всего добыто 20 900 т Серебра. Лидером добычи является Перуанская республика (3 600 т), далее следуют Мексика (3 000 т), (2 600 т), Республика Чили (2 000 т), (1 800 т), Польша (1 300 т), США (1 120 т), Канада (800 т).

На 2008 год, лидером добычи Серебра в Российской Федерации является Организация Полиметалл, добывшая в 2008 году 535 т.

Мировые запасы Серебра оцениваются в 570 000 т.


Столовое Серебро

Минимальной концентрации Серебра в воде (0,01 мг/л) достаточно для уничтожения более 260 разновидностей патогенных микробов, вирусов и грибков. Для сравнения: обычный антибиотик убивает около 6 видов микробов...

Столовое Серебро - признак богатства и здоровья. Таким образом становится понятно, что столовое Серебро не только признак благополучия или богатства, но и средство профилактики и здоровья !


Из истории: известно, что за 2500 лет до Рождества Христова египетские воины использовали Серебро для лечения своих ран - накладывали на них очень тонкие серебряные пластины, и раны быстро заживали.

Персидский царь Кир, по свидетельству Геродота, во время длительных походов хранил воду только в серебряных бочках . Таким образом ему удалось избежать множества заболеваний, распространенных в то время. В конце XIX столетия швейцарский ботаник Карл Негели установил, что под влиянием Серебра, введенного в воду, в ней гибнут все вредные микроорганизмы. Ионы Серебра препятствуют размножению болезнетворных бактерий, вирусов и грибков.

Благотворное влияние на организм человека В настоящее время Серебро рассматривается не просто как Металл, способный убивать микробы, а как микроэлемент, являющийся необходимой и постоянной составной частью тканей любого животного и растительного организма.

Веками великолепные антибактериальные свойства Серебра используются в лечении множества воспалительных заболеваний. Древние греки и римляне хранили жидкости в серебряных сосудах , зная, что таким образом улучшаются их свойства. В народной медицине Стран Востока традиционно применяют Серебро более тысячи лет. Первые американские поселенцы, продвигаясь по Дикому Западу, в дороге хранили молоко в сосудах с серебряным Долларом на дне . В церковных церемониях не случайно при причастии используются серебряные кубки - это предотвращает распространение инфекций среди паствы.

До настоящего времени считается не только престижным, но и гигиеничным использование серебряных столовых приборов. На всех космических шаттлах при подготовке к употреблению вода обогащается Серебром; на авиалайнерах используются серебряные водяные фильтры. Все чаще при очистке воды в бассейнах применяется Серебро - оно не раздражает слизистые оболочки и более эффективно как антисептик. В Японии с помощью Серебра очищается воздух. В Швейцарии широко применяют серебряные фильтры в домах и офисах.

Основоположником научного изучения механизма действия Серебра на микробную клетку является швейцарский ботаник Карл Нигели, который в 80-е годы ХIХ века установил, что взаимодействие не самого Металла, а его ионов с клетками микроорганизмов вызывает их гибель. Это явление он назвал олигодинамией (от греч. «олигос» - малый, следовый, и «динамос» - действие, т.е. действие следов). Ученый доказал, что Серебро проявляет олигодинамическое действие только в растворенном (ионизированном) виде.

Немецкий ученый Винцент, сравнивая активность некоторых Металлов, установил, что наиболее сильным бактерицидным действием обладает Серебро, меньшим - Медь и Золото.

Большой Вклад в изучение антимикробных свойств серебряной воды, ее применения для обеззараживания питьевой воды и пищевых продуктов внесен академиком Л.А. Кульским. Его экспериментами, а позднее и Работами других исследователей доказано, что именно ионы Металлов и их диссоциированные соединения (вещества, способные распадаться на ионы) вызывают гибель микроорганизмов. Медико-биологическими исследованиями установлено, что бактерицидные свойства Серебра объясняются уникальной способностью его ионов блокировать ферменты болезнетворных микроорганизмов, что приводит к их гибели. При этом микроорганизмы, необходимые для жизнедеятельности человека, сохраняются.

Известно, что благодаря бактерицидным свойствам Серебра, посуда , изготовленная и служившая видным военачальникам, помогла им во время военных походов практически не страдать от кишечных заболеваний. Недаром с середины XIII века Серебро становится традиционным материалом для изготовления посуды. В силу физических и химических свойств Серебра: великолепная ковкость, пластичность, белый цвет, бактерицидность. Посуда, сделанная из Серебра, становилась подлинной драгоценностью. Роскошные чаши, подносы, сервизы служили не только предметами праздничной сервировки стола, но и достойными подарками, становясь впоследствии экспонатами музейных коллекций. Кроме того, столовое Серебро на протяжении многих веков считалось символом достатка и респектабельности. Известен факт, что в семье графа Орлова, одного из фаворитов Екатерины II, в обиходе был сервиз , состоявший из 3275 серебряных предметов, на изготовление которых ушло более 2 тонн Серебра! Само Серебро мастера украшали плетениями из него же, чернью, сканью, зернью, эмалью.

Медиками доказано положительное влияние Серебра на Процессы жизнедеятельности человека и животных. Серебро значительно повышает специфическую защиту организма человека, что особенно полезно при низкой иммунной активности организма.

Свойства

Чистое Серебро - сравнительно мягкий и пластичный Металл: из 1 г Серебра можно вытянуть тончайшую проволочку длиной почти 2 км! Серебро - довольно тяжелый Металл: по плотности (10,5 г/см3) оно лишь немного уступает Свинцу. По электропроводности же и теплопроводности Серебру нет равных (поэтому серебряная ложка в стакане горячего чая быстро нагревается). Плавится Серебро при относительно низкой температуре (962° С), что значительно облегчает его обработку. Серебро легко сплавляется со многими Металлами; небольшие добавки Купрума делают его более твердым, годным для изготовления различных Предметов торговли.

«Серебро не окисляется на воздухе, - писал Д.И.Менделеев в своем учебнике Основы химии, - а потому причисляется к разряду так называемых благородных Металлов. Оно обладает белым цветом, гораздо более чистым, чем для всех других известных Металлов, в особенности, когда оно представляет химическую чистоту... Химически чистое Серебро столь мягко, что стирается весьма легко...» Но хотя Серебро с кислородом непосредственно не реагирует, оно может растворять значительные количества этого газа. Даже твердое Серебро при температуре 450° С способно поглотить пятикратный объем кислорода. Значительно больше кислорода (до 20 объемов на 1 объем Серебра) растворяется в жидком Металле. Это свойство Серебра приводит к красивому (и опасному) явлению - разбрызгиванию Серебра, которое известно с древних времен. Если расплавленное Серебро поглотило значительные количества кислорода, то затвердевание Металла сопровождается высвобождением большого количества газа. Давлением выделяющегося кислорода корка на поверхности застывающего Серебра разрывается, часто с большой силой. В результате происходит внезапное взрывное разбрызгивание Металла. При 170° С Серебро на воздухе покрывается тонкой пленкой оксида Ag2О, а под действием озона образуются высшие оксиды Ag2O2 и Ag2O3. Но особенно «боится» Серебро иода, например, иодной настойки и сероводорода. Во многих домах есть серебряные (или посеребренные) Предмета торговли - старые монеты, ложки, вилки, подстаканники, кольца, цепочки, другие украшения. Со временем они часто тускнеют и даже могут почернеть. Причина - действие сероводорода. Его источником могут быть не только тухлые яйца, но и резина, некоторые полимеры. В присутствии влаги Серебро легко реагирует с сероводородом с образованием на поверхности тончайшей пленки сульфида: 4Ag + 2H2S + O2 = 2Ag2S + 2H2O; из-за неровностей поверхности и игры света такая пленка иногда кажется радужной. Постепенно пленка утолщается, темнеет, становится коричневой, а потом черной. Сульфид Серебра не разрушается при сильном нагреве, не растворяется в кислотах и щелочах. Не очень толстую пленку можно удалить механически, отполировав предмет зубной пастой или порошком с мыльной водой...


Уход за серебряными Предметами торговли

Не является тайной то, что даже чистое Серебро темнеет под влиянием условий окружающей среды и требует периодической чистки. Серебро легко реагирует с сероводородом, особенно во влажной среде, покрываясь поверхностным «червленым Серебром». А так как в воздухе постоянно присутствует сероводород, то на воздухе Серебро со временем темнеет. Но не стоит унывать, что Ваше любимое украшение потеряло товарный вид. Привожу несколько способов, с помощью которых можно вернуть ювелирным Предметам торговли блеск. Например, Предмета торговли можно промыть в теплой воде с питьевой содой (50г на 1 литр воды) или мыльной воде (либо моющее бытовое средство без отбеливающего эффекта) с нашатырным спиртом (1 ст. ложка на 1 литр воды). После промывки Предмета торговли ополаскивают и протирают насухо мягкой тканью. От пятен плесени на серебряных вещах можно избавиться, если потереть их тряпочкой, смоченной подогретым 6%-м раствором уксуса. Украшения с эмальюкислотах ватным тампоном с нанесенной на него смесью зубного порошка с несколькими каплями нашатырного спирта. Не лишним будет и напоминание о правилах хранения ювелирных Предметов торговли. Во избежание появления на ювелирных украшениях темных пятен от прикосновения с влажной кожей, необходимо при снятии украшения сразу же протереть их сухой фланелью.


При выполнении различных хозяйственных работ, а также при соприкосновении с химикатами, рекомендуется снимать кольца, браслеты, и другие ювелирные Предмета торговли, что предохраняет их от повреждений и загрязнений. Рекомендуется также снимать украшения при употреблении косметических средств, приготовленных на основе солей ртути и Серы ( легко образует с Серебром сернистые соединения черного цвета). Темные пятна на серебряных Предметах торговли оставляет йод. Хранить ювелирные Предмета торговли следует в футлярах в сухом помещении. Чтобы серебряные вещи дольше сохраняли блеск, храните их так, чтобы они не касались друг друга и остальных украшений.

Приобретая столовые приборы из Серебра, Вы заботитесь и о своем здоровье. Благодаря своей высокой бактерицидности Серебро предохраняет от многих инфекционных, желудочных и легочных болезней. Этот Металл укрепляет сердце, улучшает зрение, помогает при урологических заболеваниях, утоляет жажду. Хорошо известен старинный обычай - хранить воду в серебряных сосудах.

Уход за Серебром очень важен для поддержани я серебряных предметов в красивом состоянии. На этой странице вы можете прочитать несколько способов по чистке и очистке Серебра и посеребряных предметов.

Чистка и очистка Серебра

Очистить Серебро от темных пятен можно раствором аммиака !

Для удаления темного налета с серебряных, посеребренных Предметов торговли, столовых приборов нужно вымыть их в теплой мыльной воде, а затем почистить мягкой тряпочкой с нанесенной на нее смесью порошкообраз­ного мела (зубного порошка) с несколькими каплями нашатырного спирта , после чего вымыть чистой водой и протереть. Также блеск сильно потускневших серебряных Предметов торговли можно восстановить, если вымыть их сначала любым моющим средством, а затем раствором гипосульфита натрия (20 г фотографического гипосульфита натрия на 100 мл воды) и теплой водой.

Можно освежить серебряные, посеребренные и мельхиоровые Предмета торговли, вымыв их в теплой воде с питьевой содой (17 г на 1л воды) или в теплой мыльной воде с добавлением нашатырного спирта (2 столовые ложки на 1 л воды), затем сполоснуть чистой водой и протереть.

От пятен плесени на серебряных вещах можно избавиться, если протереть их тряпочкой, смоченной подогретым 6%-м раствором уксуса.

Чтобы украшения радовали глааммиакаими тоже надо ухаживать. Во-пер­вых, чтобы предохранить ювелирные Предмета торговли от загрязнения и поврежде­ний, их надо снимать на время домашних работ, а также при пользовании косметическими средствами.

Если серебряная цепочка или кольцо покрылись темным налетом, помойте украшение в теплой мыльной воде, затем почистите мягкой тряпочкой, смоченной в смеси нашатырного спирта и зубного порошка, еще раз помойте чистой теплой водой и протрите.

Уход за столовыми приборами

Для Предметов торговли с серебряным или золотым покрытием требуются особые условия ухода. Посеребренные Предмета торговли не должны соприкасаться с резиной, так как она содержит серу, которая является Катализатором само оксидирования Серебра. Следует помнить, что Серебро и Золото весьма мягкие материалы и легко царапаются, поэтому столовые приборы с покрытием требуют бережного обращения. Столовые приборы с покрытиями из драгметаллов следует регулярно чистить специализированными средствами. Столовое Серебро должно храниться в специально предназначенных футлярах в прохладном месте. Зеркальная поверхность полированного Серебра и первоначальный цвет сохраняются в течение длительного времени, если после каждого мытья или споласкивания оно тщательно вытирается или высушивается насухо. При возникновении незначительного темного налета на поверхности Предметов торговли он может быть удален мытьем в теплой воде с добавлением пищевой соды (50 грамм на 1 литр). После этого Серебро протирается насухо мягкой тканью. В случае сильного потемнения или загрязнения поверхности Предметов торговли необходимо использовать специальные средства для чистки Серебра (например, "Dipping Bath for Argentum" немецкой Компании «Delu» или его итальянский аналог Компании «Silbo». Из отечественных чистящих средств наиболее эффективен «ФЛЮР» - уникальная разработка НИИювелирпрома, входящего в состав ОАО «Русские самоцветы». В случае наличия золотого декоративного покрытия на поверхности предметов столового Серебра необходимо особенно тщательно следить за его сохранностью: нанесенное тонким слоем оно может быть повреждено или уничтожено при сильном трении или нагреве Предмета торговли до температуры 100°С. Нельзя допускать механического деформирования предметов сервировки стола (сгибания, излома и пр.), так как при этом защитно-декоративные покрытия на этих Предметах торговли могут разрушаться и отслаиваться от Серебра.

Соединения

Известны соединения, в которых Серебро одно-, двух- и трех- валентно.В отличие от устойчивых соединений одновалентного Серебра соединения двух-и трехвалентного Серебра немногочисленны и мало устойчивы.

Соединения одновалентного Серебра

Известны многочисленные устойчивые соединения (простые и координационные) одновалентного Серебра. Ион одновалентного Серебра Ag+ с радиусом 1.55(диамагнитен, бесцветен, гидратирован, легко поляризуется, является окислителем (легко восстанавливается различными восстановителями до металлического Серебра) и играет роль Катализатора в реакции окисленияиона марганца (II) анионом: S202-8. Большинство соединений Серебра (I) плохо растворимо в воде. Нитрат, перхлорат, хлорат, фторид растворяются в воде, а ацетат и сульфат Серебра растворимы частично. Соли Серебра (I) белые или слегка желтоватые (когда

аннон соли бесцветен). Вследствие деформируемости электронных оболочек иона серебра(I) некоторые его соединения с бесцветными анионами окрашены. Многие из соединений Серебра (I) окрашиваются в серый под действием солнечного света, что обусловлено Процессом восстановления до металлического Серебра. У солей серебра(I) мало выражена склонность к гидролизу. При нагревании солей Серебра со смесью карбоната натрия и угля образуется металлическое Серебро:

2AgNO3 + Na2CO3 + 4С = 2Ag + 2NaNO2 + 5CO

Известны многочисленные координационные соединения серебра(I), в которых координационное число Серебра равно 2, 3 и 4.

Неорганические соединения

Окись Серебра, Ag2O, получают при обработке растворов AgNO3 щелочами или растворами гидроокисей щелочноземельных Металлов:

2AgNO3 + 2КОН = Ag2O + 2KNO3 + Н2O

Окись Серебра представляет собой диамагнитный кристаллический порошок (кубические кристаллы) коричнево-черного цвета с плотностью 7,1 — 7,4 г/см3, который медленно чернеет на свету высвобождая кислород, и разлагается на элементы при нагреваний до +200°C:

Водород, окись углерода, перекись водорода и многие Металлы

восстанавливают окись Серебра в водной суспензии до металлического Серебра. При окислении Ag2O озоном образуется окись серебра(II) Окись Серебра (I) растворяется в плавиковой и азотной кислотах в солях аммония, в растворах цианидов щелочных Металлов, в аммиаке и т. д.

Ag2O + 2HF = 2AgF + Н2O

Ag2O + 2HNO3 = 2AgNO3

Ag2O + 2(NH4)2CO3 = 2CO3 + 2H2O +CO2

Ag2O + 4KCN + H2O = K + 2KOH

Ag2O + 4NH4OH = 2OH + 3H2O или

Ag2O + 4NH3 + H2O = 2OH

При хранении гидроокись диамминсеребра OH (которая является растворимым основанием с окислительными cсвойствами) превращается в способный взрываться имид Серебра;

2OH = Ag2NH + 3NH3 + 2H2O

Растворы хлоридов щелочных Металлов превращают окись серебра(I) в хлорид серебра(I), а при действии избытка HgI2 нa Ag2O образуется Ag2. Окись Серебра — энергичный окислитель по отношению к соединениям хрома(III), альдегидам и галогенопроизводным углеводородов:

5Ag2O + Cr2О3= 2Ag2CrO4 + 6Ag

3Ag2O + 2Cr(OH)3 + 4NaOH = 2Na2GrO4 + 6Ag + 5H2O

Окисление галогенопроизводных углеводородов приводит к обраводорода/span> спиртов, а окисление альдегидов — соответствующих кислот. Растворы сульфидов щелочных Металлов и водные суспензии сульфидов тяжелых Металлов превращают окись Ag2O в сульфид Ag2S. кислотахуспензии окиси Серебра применяются в медицине как антисептическое

2Ag + F2 = 2AgF + 97,4 ккал

Ag2CO3 + 2HF = 2AgF + H2O + CO2

Ag2O + 2HF = 2AgF + H2O

Ag = AgF + BF3

Выделение кристаллов AgF из водного раствора осуществляется путем концентрирования в вакууме в темноте. Соединение AgF представляет собой расплывающиеся на воздухе бесцветные гранецентрированные кубические кристаллы с плотностью 5,85 г/см3 и температурой плавления +435°C; фторид Серебра плохо растворим в спирте, легко растворим в воде (в отличие от остальных галогенидов Серебра) и в аммиаке; его нельзя хранить в стеклянной посуде, поскольку он разрушает стекло. Под действием паров воды и водорода при нагревании фторид Серебра восстанавливается до металлического Серебра:

2Ag+ Н2O = 2Ag + 2HF + Ѕ O2

2AgF + Н2 = 2Ag + 2HF

Ультрафиолетовые лучи вызывают превращение фторида Серебра в полуфторид Ag2F. Водный раствор фторида Серебра служит для дезинфекции питьевой воды.

Известны кристаллогидраты AgF .nH2О (где п — 1, 2, 4) и фторокислоты H, H3. Моногидрат AgF . Н2О осаждается в виде светло-желтых кубических кристаллов при упаривании в вакууме раствора безводного AgF в воде. Дигидрат AgF . 2H20, представляющий собой твердые бесцветные призматические кристаллы с температурой плавления +42°C, выпадаеаммиаканцентрированных растворов AgF. Из раствора, полученного растворением Ag2O в 20%-ной плавиковой кислоте, выпадают кристаллы AgF . 4Н20. При охлаждении раствора Aкислотыавиковой кислоте осаждаются бесцветные кристаллы H3, которые при 0°C в токе воздуха превращаются в белые кристаллы H. Хлорид Серебра, AgCl, встречается в природе в виде Минерала кераргирита и может быть получен обработкой металлического Серебра хлорной водой, взаимодействием элементов при высокой температуре, действием газообразного НСl на Серебро (выше +1150°C), обработкой соляной кислотой Серебра в присутствии воздуха (кислорода или другого окислителя), действием растворимых хлоридов на Серебро, обработкой растворов солей Серебра соляной кислотой или раствором какого-либо хлорида.

Соединение AgCl представляет собой диамагнитные белые кубические гранецептрированные кристаллы с т. пл. +455°C и т. кип. +155аммиакеорид Серебра растворяется в растворах хлоридов (NaCl, KС1, NH4C1, СаС12, MnCl2). цианидов, тиосульфаводорода ратов щелочных Металлов и аммиаке с образованием растворимых и бесцветных координационных соединений

AgCl + КСl = K

AgCl + 2Na2S2O3 + Na3 + NaCl

AgCl + 2KCN = K + KCl

AgCl + 2NH3 = Cl

Под действием света хлорид Серебра восстанавливается (окрашиваясь в фиолетовый, а затем в черный цвет) с высвобождением ребра и хлора: AgCl = Ag + 1/2Cl2. На этой реакции основывается применение хлорида Серебра в фотопленках.

Бромид Серебра, AgBr, встречается в природе в виде Минерала бромаргирита. В лаборатории может быть получен в темноте обработкой раствора AgNO3 раствором НВг (или бромида щелочного Металла) либо непосредственным взаимодействием бpoма с металлическим Серебром. Получение AgBr осуществляется в темноте, чтобы исключить фотовосстановление:

AgNO3 + KBr = AgBr + KNO3

Ag + 1/2Br2 = AgBr + 27,4 ккал

Соединение AgBr может существовать либо в коллоидной форме либо в виде диамагнитных желтых кубических гранецентрированных кристаллов с плотностью 6,47 г/см3, т. пл. +434°C и т. кип. +15370C. Бромид Серебра плохо растворим в воде и растворяется в аммиаке тпосульфатах щелочных Металлов и в конц. Hкислотойpan>при нагревании:

AgBr + 2NH4OH = Br + 2H2O

2AgBr + кислотойAg2SO4 + 2HBr

AgBr + 2Na2S2O3 -> Na3 + NaBr

Бромид Серебра более чувствителен к свету, чем хлорид Серебра, и иод действием света разлагается на элементы: AgBr = Ag +1/2Br2. Бромистое Серебро восстанавливается Цинком в кислой среде или Металлами (такими, как или Медь) при нагревании а такжеаммиакеением с безводным карбонатом натрия:

2AgBr +Na2CO3 = 2Ag + 2NaBr + СO2

На холоду AgBr поглощает аммиак, причем могут образовываться различные аддукты: AgBr . NH3, 2AgBr . 3NH3, AgBr . 3NH3. Бромид Серебра применяется для изготовления фотопленок и в качестве Катализатора при получении монокарбоновых жирных кислот или олефинов с помощью реактива Гриньяра. Иодид Серебра, AgI. встречается в природе в виде Минерала йодагирита в лаборатории может быть получен (в темноте) обратной раствора AgNO3 раствором HI или иодида щелочного Металла, путем непосредственного взаимодействия паров иода с металлическим Серебром, хлоридом или бромидом Серебра при нагревании, действием HI на металлическое Серебро на холоду.

AgNO3 + HI = Agl + HNO3

Ag + V2I2 = Agl + 29,3 ккал

AgNO3 + KI = Agl + KNO3

Ag + HI = Agl + l/2H2

Иодид Серебра может существовать либо в виде прозрачных лучепреломляющих лимонно-желтых гексагональных призматических кристаллов, либо в виде двулучепреломляющих красных октаэдров.

AgNO3 + KCN = AgCN+KNO3

Циаммиакеребра представляет собой бесцветные ромбоэдрические кристаллы с плотностью 3,95 г/см3 и т. пл. +320..350°C. Он плохо растворим в воде, растворяется в аммиаке или растворах солей аммония, цианидов и тиосульфатов щелочных Металлов с образованием координационных соединений.

AgCN + 2NH4OH = CN +2H2O

AgCN + KCN = K

Уксусная кислота и сероводород взаимодействуют с дициано-аргентатами Me1 по уравнениям

K + HNO3 = AgCN + KNO3 + HCN

2K + 2H2S = Ag2S + K2S + 4HCN

При обработке K нитратом Серебра образуется дицианоаргентат Серебра Ag, представляющий собой димерную форму моноцианида Серебра. Известны цианоаргентаты типов Me12 и Me12. Оксалат Серебра представляет собой белые моноклинныекислоталлы с плотностью 5,029 г/см3, он плохо растворим в воде, чувствителен к свету, разлагается при нагревании до +100°C. При +140oC Ag2C2O4 разлагается совзрывом.

Периодаты Серебра. Известны следующие периодаты Серебра: AgIO4 - оранжевый, Ag2H3IO6 — лимонно-желтый. Ag3 IO5 и Ag5IO6 - черные.

Координационные соединения

Большинство простых соединений одновалентного Серебра с неорганическими и органическими реагентами образуют координационные соединения. Благодаря образованию координационных соединений многие плохо растворимые в воде соединения Серебра превращаются в легко растворимые. Серебро может иметь координационные числа 2, 3, 4 и 6. Известны многочисленные координационные соединения у которых вокруг центрального иона Серебра скоординированы нейтральные молекулы аммиака или аминов (моно- или диметиламин, пиридин, этилендиампн. анилин и т.д.).При действии аммиака или различных органических аминов на окись, гидроокись, нитрат, сульфат, карбонат Серебра образуются соединеаммиакеомплексным катионом, например +, +, +, +,+. Устойчивость комплексных катионов Серебра ниже устойчивости соответствующих катионов меди(II). При растворении галогенидов Серебра (AgCl, AgBr, AgI) в растворах галогенидов, псевдогалогенидов или тиосульфатов щёлочных Металлов образуются растворимые в воде координационные соединения, содержащие комплексные анионы, например -, 2-, 3-, Ag Br3]2- и т.д. n-Диметиламинобензилиденродамин образует с концентрированными растворами солей Серебра фиолетовый осадок. С разбавленными растворами солей Серебра диметиламинобензил-иденродамин не образует осадка, а только окрашивает раствор в интенсивно фиолетовый цвет.

Соединения двухвалентного Серебра

Известно немного соединений двухвалентного Серебра. Для них характерна низкая устойчивость и способность разлагаться водой с выделением кислорода. Неорганические соединения

Окись Серебра, AgO, получают действием озона на металличекое Серебро или на Ag2O, AgNO3 или Ag2SO4, обработкой раствора AgNO3 раствором K2S2O8, обработкой щелочной суспензии Ag2O перманганатом калия, анодным окислением металлического Серебра с использованием в качестве электролита разбавленного раствора H2SO4 или NaOH.

Ag2O + О3 = 2AgO +O2

2AgNO3 + K2S2O8 + 4KOH = 2AgO + 2K2SO4 + 2KNO3 + 2H2O

Ag2O + 2KMnO4 + 2КОН = 2AgO + 2K2MnO4 + H2O

Обработка K2S2O8 соединений Серебра в слабо киаммиакаeде и в присутствии пиридина приводит к образованию оранжевого кристаллического осадка аммиака2O8. Окись Серебра представляет собой диамагнитный серовато черный кристаллический порошок с плотностью 7,48 г!см3. Она растворима в H2SO4, НClO4 и конц. HNO3, устойчива при обычной температуре, разлагается на элементы при нагревании до +100oC, является энергичным окислителем по отношению к SO2, NH3 Me+NO2, обладает свойствами полупроводника. Фторид Серебра, AgF2, получают действием газообразного фтора на металлическое Серебро при +250..300°C пли на галогениды серебра(I) при +200..300°C.

Ag + F2 = AgF2 + 84,5 кал

Фторид Серебра представляет собой парамагнитный коричневочерный порошок с т. пл. +690°C. Он разлагается под действием воды или влажного воздуха и обладает окислительным действием по отношению к иодидам, спирту, солям хрома(III) и марганца (II)

6AgF2 + ЗН2O = 6AgF + 6HF + O3

Сульфид Серебра, AgS, образуется в виде коричневого осадка при обработке раствора AgNO3 в беизоилпропиле раствором Серы в сероуглероде. Нитрат Серебра, Ag(NO3)2, получают окислением Ag(NO3)2 озоном. Это бесцветные кристаллы, разлагающиеся водой: 4Ag(NO3)2 + 2Н2O = 4AgNO3 + 4HNO3 + O2

Координационные соединения

Известен ряд координационных соединений двухвалентного Серебра типов X2 и X2 (где Am == фенантролин C12H8N2, дипиридил

C10H8N2 и X = NO-3, СlO-3, ClO-4)

Соединения трехвалентного Серебра

Известно небольшое число соединений трехвалентного (ребра, например Ag2O3,K6H .10 H2O, K7, Na7H2 .14H2 O и др. Окись Серебра, Ag2O3, образуется в смеси с окисью серебра(II) - анодном окислении Серебра или при действии фтора (пли пероcульфата) на соль серебра(I). Черная кристаллическая смесь Ag2O3 AgO неустойчива, обладает окислительными свойствами и при легком нагревании превращается в AgO.

Диортопериодатоаргеитаты(III),MeI6H.nH2O, являются диамагнитными солями оранжевого цвета c кристаллами красивой формыNH3х рассматривают как производные - гипотетической кислоты H7. При окислении смеси водных растворов AgNO3, К5IO6 и КОН надсернокислым калием K2S2O8 образуется коричневый раствор, из которого при концентрировании путем медленного испарения выпадают оранжевые кристаллы K6H .10Н2O, а при быстром упариваииии — K7 .КОН.8Н2O. Обработка соединения K6H карбонатом натрия приводит к осаждению оранжево- желтых кристаллов Na5KH .16Н2O.

Диортотеллураргентаты Me+6H3.nH2O Me+7H2.nН2O представляют собой красиво кристаллизующиеся желтые диамагнитные соли — производные гипотической кислоты H9.

Окисление водного раствора смеси Ag2S04, Na2CO3 и ТеO2 пероксосульфатом калия K2S2O5 приводит к образованию коричневого раствора, из которого при концентрировании путем изотеримического испарения осаждаются желтые кристаллы Na6H3 .18Н20. При использовании больших количеств корбаната натрия выпадают кристаллыNa7H2.14Н2

Для чего нужна Проба и когда появились Пробы

Проба гарантируется государством, для чего Предмета торговли обязательно проходят пробирный (опробование и анализ) и на них накладываются оттиски пробирных клейм. Слитки благородных Металлов клеймятся Пробой, определённой в сплаве. Не подлежат клеймению ордена, наградные медали и монеты, хотя Проба их сплавов строго регламентирована и контролируется. Контроль за Пробой сплавов и Предметов торговли и клеймение в СССР выполняется инспекциями пробирного надзора.

В Странах, где установлен государственный пробирный надзор, Торговля Предметами торговли из благородных Металлов без оттисков пробирных клейм запрещена, а подделка пробирного клейма преследуется законом. Для клеймения Предметов торговли применяются пробирные клейма разнообразных форм и рисунков. Рисунок клейма (обычно эмблема Страны, гкислоты т. п.) сочетается с цифрами Пробы (например, ) или с условными цифрами 1, 2 и т. д., где каждая цифра соответствует определённой Пробе (например, Австрия, Аргентина , Болгария, Венгрия, Камерун, Нидерланды, Польша, Румыния, Чехословакия, Югославия, Мексика); иероглифами (Египет, Тунис, ). Иногда Проба обозначает клеймо только в виде цифр метрической Пробы (Монголия). В СССР и на серебряных предметах того времени пробирное клеймо состоит из 3 элементов: эмблемы (серп и молот на фоне пятиконечной звезды); трёхзначных цифр метрической Пробы; шифра (в виде буквы), закрепленного за определённой инспекцией пркислотыо надзора.


Клеймение ювелирно-бытовых Предметов торговли известно со средних веков (например, в Британии и Италии с 15 века, во Франции с 16 века). В ряде Стран клеймение введено в 20 веке (например, в Канаде с 1913 года, Австралии с 1923 года). В некоторых Странах ювелирно-бытовые Предмета торговли из благородных Металлов хотя и клеймятся (чаще самими фирмами-производителями Предметов торговли), но Контроль за Пробой со стороны Государства не обязателен или слабый (например, Австралия , Бельгия, Италия, Канада, Мальта, США, ФРГ, Швеция).

В Российской Федерации государственное клеймение Предметов торговли узаконено: серебряных - в 1613 году, золотых - в 1700 году; в СССР: платиновых - в 1927 году, палладиевых - в 1956 году.

- – химический элемент, драгоценный металл, являющийся биржевым товаром. Как правило, обозначается символом Ag, который происходит от латинского слова argentum. В биржевых сводках также может встречаться английское слово silver, обозначающее… … Банковская энциклопедия

серебро - сущ., с., употр. сравн. часто Морфология: (нет) чего? серебра, чему? серебру, (вижу) что? серебро, чем? серебром, о чём? о серебре 1. Серебром является благородный металл серовато белого цвета с блеском, который используется для изготовления… … Толковый словарь Дмитриева

серебро - укр. серебро, срiбло, блр. серебро, др. русск. сьребро (Ио. Клим., ХII в., Григ. Наз., по Шахматову, Очерк 200 и сл.), откуда путем ранней ассимиляции гласных – др. русск. серебро (Изборн. Святосл. 1073 г., грам. Мстислава 1130 г., Туровск. еванг … Этимологический словарь русского языка Макса Фасмера

СЕРЕБРО - СЕРЕБРО, серебра, мн. нет. ср. 1. Драгоценный мягкий металл серовато белого цвета с блеском. Чистое серебро. Сплавы серебра. || собир. Изделия из этого металла (посуда, украшения и пр.). Столовое серебро. Чайное серебро. «И много у него добра,… … Толковый словарь Ушакова

СЕРЕБРО - СЕРЕБРО, Argentum (Ag), хим. элемент, металл, ат. в. 107,880, находится в 7 м ряду I группы периодической системы элементов Менделеева. С. встречается в природе в виде самородного, а также в соединениях с серой, селеном, теллуром, мышьяком и… … Большая медицинская энциклопедия

серебро - СЕРЕБРО1, а, ср Химический элемент, серовато белый блестящий драгоценный металл. Серебро применяется главным образом в виде серебряных сплавов для изготовления ювелирных изделий и столовой посуды, для чеканки монет и для различных технических… … Толковый словарь русских существительных

СЕРЕБРО - (Argentum), Ag, химический элемент I группы периодической системы, атомный номер 47, атомная масса 107,8682; благородный металл, tпл 961,93шC. Используется в производстве кино и фотоматериалов. Серебро и его сплавы применяют в электротехнике и… … Современная энциклопедия

СЕРЕБРО - (лат. Argrentum) Ag, химический элемент I группы периодической системы Менделеева, атомный номер 47, атомная масса 107,8682. Металл белого цвета, ковкий, пластичный; плотность 10,5 г/см³, tпл 961,9 .С. Один из дефицитных элементов. Имеет… … Большой Энциклопедический словарь

СЕРЕБРО - (символ Ag), белый химический элемент второго ряда ПЕРЕХОДНЫХ ЭЛЕМЕНТОВ, металл. Встречается в АРГЕНТИТАХ (сульфид) и роговом серебре (ХЛОРИД СЕРЕБРА), добывается также как побочный продукт очистки меди и свинца. Главным производителем серебра… … Научно-технический энциклопедический словарь Подробнее


Серебро химический элемент (Argentum, argent, Silber), хим. знак Ag. - С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag 2 S - серебряный блеск, с хлором, напр. AgCl - роговое серебро, с селеном - Ag2 Se, с мышьяком, сурьмой, медью, ртутью, золотом, свинцом и пр.). С. встречается в морской воде (в 100 л около 0,001 г) и в золе некоторых растений; указывают на присутствие его в солнечной атмосфере.

Физические свойства.

Химически чистое С. в слитках имеет красивый белый цвет с желтоватым оттенком (по цвету алхимики видели в С. связь с луной и в своих сочинениях обозначали его знаком луны). В тонких листках в проходящем свете оно кажется синеватым с зеленым или желтым оттенком. С. довольно мягко - мягче меди, но тверже золота. Легко куется, вальцуется и вытягивается в проволоку: из С. можно делать листы толщиной до 0,003 мм и проволоку, 2 1/2 км которой весит ок. 1 г; при всем этом С. хорошо полируется. Серебряная проволока в сечении 1 кв. мм разрывается при нагрузке 28,5 кг при 0°. Примеси сильно изменяют его прочность. С. кристаллизуется в формах правильной системы, что видно как на образчиках самородного С., так и на искусственно полученных кристаллах С. (из расплавленного металла). Уд. вес С. различными исследователями дается от 10,50 до 10,57; коэфф. расширения 0,0000192 (Физо) и 0,0000205 (Ле Шателье). Темп . плавл. С. 954° (Виоль); 962 (Д. Бертело); при более высокой темп., напр. в пламени гремучего газа, оно обращается в пары и перегоняется (пары С. имеют красивый зеленый цвет). Уд. вес расплавленного С. около 9,6; переходя из жидкого состояния в твердое, оно расширяется подобно воде. Скрытая теплота плавления С. 21,07 кал. (Pionchon). Теплоемкость С. 0,057 (Реньо); Pionchon дает теплоемкость С. при 0° = 0,05758 и при темп. t: с = 0,0578 + 0,0000088t + 0,000000018 (где t изменяется от 0° до 907°) и с = 0,0748 (при темп. от 907° до 1100°). Теплопроводность = 100; электропроводность при 18° = 100; сопротивление для электрического тока проволоки радиуса 1 мм и длиной 1 м при 0° = 0,0192. Электрохимический эквивалент , т. е. количество С., выделяемого током в 1 ампер в 1 сек. = 0,0011183 г, или в 1 час = 4,02588 г.

Химические свойства.

С. по своим свойствам, с одной стороны, напоминает щелочные металлы К, Na, Li, Cs, Rb, a с другой - медь и золото (в соединениях закиси). Подобно щелочным металлам, С. образует почти исключительно соединения типа AgX (где Х - одноатомный элемент или группа) и дает растворимую (немного) в воде окись; соли С. изоморфны с солями натрия; подобно меди и золоту, С. обладает большим уд. весом, высокой темп. плавления, дает нерастворимые углекислые, галоидные, цианистые и др. соединения; С. сходно с этими металлами (в особенности, с золотом) и по сравнительно малой способности к прямым соединениям с другими телами, чем оно резко отличается от щелочных металлов. Подобно меди, С. дает множество растворимых двойных солей с аммиаком, легко соединяется с галоидами, с серой, мышьяком, образует многочисленные сплавы с золотом, медью, свинцом и др. металлами; с кислородом С. прямо, вообще говоря, не соединяется ни при какой температуре. При плавлении на воздухе С. поглощает значительное количество кислорода (на 1 куб. стм С. до 22 куб. стм); при застывании С. поглощенный кислород выделяется; при этом происходит любопытное явление, напоминающее извержение вулканов: на поверхности застывающего металла образуется корка, на которой местами появляются небольшие возвышения, из которых вырывается растворенный кислород, увлекая с собой частички раскаленного металла. Что касается окисления С., Ле Шателье, однако, нашел, что при 300° и при давлении около 15 атм. С. поглощает такое количество кислорода, которое указывает на образование при этом окиси или закиси С.; неполучение их в обыкновенных условиях при малых давлениях кислорода происходит вследствие большой упругости диссоциации этих соединений. С. не изменяется (не окисляется) от расплавленных щелочей и азотнокислых солей. Оно относится к числу благородных металлов, подобно золоту, платине и др. С. не действует на воду при обыкн. темп., но при накаливании оно разлагает ее, причем кислород поглощается С., а водород остается свободным. Галоидоводородные кислоты разлагают С. с выделением водорода и образуют соответственные галоидные соединения С., хотя действие здесь неполное и быстро прекращается благодаря тому, что образующиеся вещества мало растворимы и покрывают поверхность С. слоем, который затрудняет дальнейший доступ кислоты к металлу. Подобно галоидоводородным кислотам, и их соли действуют на С., напр., поваренная соль или йодистый калий при действии на С. легко образуют С. хлористое AgCl или йодистое AgJ. Крепкая серная кислота (в особенности при нагревании) разлагается С. с выделением сернистого газа и образует сернокислую соль Ag 2 SO4 . Азотная кислота (лучше - разбавленная водой) очень легко растворяет С., при этом выделяются окислы азота и образуется азотно-серебряная соль AgNO 3 . Кроме указанных выше галоидных солей, на С. действуют и некоторые другие. Для практики в этом отношении важен цианистый калий, который растворяет С. в присутствии кислорода воздуха, образуя двойные цианистые соединения; этим пользуются в гальванопластике для поддержания определенного состава в серебряных ваннах. С. слегка растворяется в аммиаке при долгом стоянии в присутствии воздуха. Красивый цвет С., легкость обработки его, сравнительная неизменяемость от действия различных химических агентов в связи с малым сравнительно распространением его на земле делают С. прекрасным материалом для производства украшений, домашней утвари, монет и пр.

Соединения

С . с кислородом. Более или менее известны закись Ag 4 O, окись Ag 2 O и перекись AgO или Ag 2 O3 (Вертело); все они сравнительно малопрочны и легко разлагаются, выделяя кислород. Закись С . Ag4 O (иначе недокись, или квадрантная окись) аналогична недокиси меди Сu 4 O. Она получена Вёлером при нагревании лимоннокислого, щавелевокислого, мелиттовокислого С. в токе водорода при 100°; вещества эти буреют, теряют воду и превращаются в соединения, отвечающие закиси; после растворения в воде едкое кали выделяет из них Ag 4 O. Закись получается также при пропускании водорода через холодный раствор хромовокислого С. Ag 2 CrO4 в аммиаке или через нагретые растворы молибденовокислого Ag 2 MoO4 или вольфрамовокислого С. Ag 2 WoO4 , также при действии фосфористой кислоты на нейтральный или аммиачный раствор азотно-серебряной соли или при действии на нее закиси меди и проч. Ag 4 O - черное аморфное вещество; при нагревании до 100° она выделяет кислород. Солей, отвечающих ей с точностью, неизвестно. При действии кислородных кислот Ag 4 O вообще разлагается на металлическое С. и окись С. Ag 2 O, которая и соединяется с кислотой. С соляной кислотой Ag 4 O дает полухлористое С. Ag 2 Cl по уравн.: Ag 4 O + 2HCl = 2Ag2 Cl + H2 O. Марганцoвокалиевая соль переводит Ag 4 O в окись С. Ag 2 O, и эта реакция может служить для количественного определения Ag 4 O в смеси с Ag 2 O и металлическим С., хотя существуют указания, что марганцовокалиевая соль окисляет и С. Указывают на существование гидрата закиси С. Аg 4 (НО) 2 ; именно металлическое С. при действии перекиси водорода постепенно переходит в раствор, причем выделяется кислород и образуется Ag 4 (HO)2 по уравн.: 2Ag 2 + H2 O2 = Ag4 (HO)2 ; при стоянии на воздухе раствор буреет и выделяет мелкораздробленное С. Окись С. Ag2 O получается при действии едкого натра или кали на раствор серебряных солей, напр. азотно-серебряной соли: 2AgNO 3 + 2KHO=Ag2 O + H2 O + 2KNO3 . Окись С. выделяется в виде бурого или черного вещества (уд. в. около 7,1), которое после высушивания при 100° почти не содержит воды (хотя Carey-Lea после 20 час. высушивания находил ее до 0,57%); последние следы воды удаляются при такой температуре, когда происходит уже частичное разложение Ag 2 O (около 100° - 200°). При 300° под давлением в атмосфере кислорода разложение Ag 2 O идет очень медленно; упругость диссоциации Ag 2 O лежит между 10 - 15 атм.; при 400° - 450° разложение идет быстро. Окись С. очень мало растворима в воде (1 ч. в 3000 ч. воды). Раствор имеет металлический вкус и ясную щелочную реакцию; на свету он буреет. Ag 2 O на свету выделяет кислород; водород уже на холоду восстановляет, хотя реакция идет медленно; при нагревании до 100° она идет быстро и настолько чисто, что Ag 2 O с успехом может быть применена для анализа газовых смесей, содержащих водород, напр., для светильного газа. Ag 2 O разлагает галоидные соединения даже щелочных металлов, напр., Ag 2 O + 2NaCl + H2 O = 2AgCl + 2NaHO; она вытесняет многие основания из их солей, напр., CuO, HgO, Аl 2 O3 , Fe2 O3 и пр. Окись С., подобно щелочам, образует соли даже с наиболее слабыми кислотами; при этом не получаются основные соли, благодаря чему (в связи с легкостью определения С.) Ag 2 O применяется для установки частичного веса многих кислот (в особенности органических). Как щелочь, Ag 2 O соединяется с окисью цинка ZnO и окисью свинца РbО. Соли окиси С. с бесцветными кислотами по большей части бесцветны; на свету они более или менее разлагаются (чернеют), в особенности в присутствии легко изменяющихся органических веществ; так же действует и высокая температура. Соли, растворимые в воде, обладают металлическим вкусом и сильно ядовиты. При осаждении спиртового раствора азотно-серебряной соли спиртовым раствором едкого кали при 40° получается белый осадок, чернеющий при нагревании, который, вероятно, представляет гидрат окиси С. Ag(OH). Если облить крепким аммиаком свежеосажденную окись С. и оставить на некоторое время, то часть Ag 2 O перейдет в раствор, часть же образует черное кристаллическое вещество, обладающее чрезвычайно взрывчатыми свойствами, - так наз. гремучее С ., открытое Бертолетом. Оно взрывает от трения, нагревания и пр.; иногда достаточно падения капли воды на влажное гремучее С., чтобы произошел взрыв. Состав его с точностью не установлен; может быть, здесь имеется Ag 3 N, Ag2 HN или подобное соединение. Гремучее С. легко растворимо в цианистом калии. Перекись С . Ag2 O2 или Ag 2 O3 образуется на положительном полюсе при электролизе концентрированных растворов азотнокислого С.; оно получается в виде темных октаэдров или длинных игл и содержит обыкновенно некоторое количество AgNO 3 . Перекись С. при нагревании очень легко теряет кислород; при 110° она слабо взрывает (иногда взрывает сухая перекись при долгом хранении в обыкн. темп.). С соляной кислотой она выделяет хлор, с серной - кислород, аммиак восстановляется ею до азота и пр. Указывают на существование промежуточной окиси Ag 4 O3 , которая еще менее изучена, чем Ag 2 O2 .

Галоидные соединения

С . С хлором С. дает два соединения: С. полухлористое Ag 4 Cl2 и хлористое AgCl. Полухлористое С. Ag4 C12 получается при действии соляной кислоты НСl на Ag 4 O (см. выше), хотя по некоторым указаниям при этом получается не Ag 4 Cl2 , a смесь Ag и AgCl. Gunz нашел, что Ag 4 Cl2 удобнее всего готовить из полуфтористого С. Ag 4 F2 , действуя на него пятихлористым фосфором РСl 5 , хлористым кремнием SiCl 4 , хлористым углеродом CCl 4 ; труднее получается при действии НСl. Хлористое С. AgCl под влиянием света выделяет хлор и дает Ag 4 Cl2 . Полухлористое С. - вещество черного цвета, нерастворимое в воде, легко разлагающееся на Ag и AgCl при действии, напр., NaCl, KCN, H 3 N и пр. Изучено оно сравнительно еще мало, так что даже состав нельзя считать вполне прочно установленным. Хлористое серебро AgCl - одно из важнейших соединений С. и играет большую роль при химическом анализе; оно было известно еще алхимикам. При большом химическом сродстве Ag 2 и Cl 2 (теплота образования AgCl равна 29200 кал.) AgCl получается многочисленными способами. Хлор действует на С. уже при обыкн. темп., хотя и очень медленно; при накаливании Ag в струе хлора реакция идет значительно скорее (при этом следы AgCl могут уноситься током хлора и часть хлора поглощается хлористым С.). Подобно хлору действует и хлорная вода. При накаливании С. в атмосфере НСl происходит разложение последнего с образованием AgCl и выделением водорода: Ag + HCl = AgCl + H; эта реакция идет до известного предела, если она идет в замкнутом пространстве, так как водород может вытеснять в свою очередь Ag из AgCl по уравн.: AgCl + H = Ag + HCl; подобным образом действуют и хлористые металлы. Соляная кислота , растворы хлористых металлов превращают С. с поверхности в AgCl и пр.; но наиболее удобно получается AgCl при обменном разложении растворимых серебряных солей с растворами НСl или хлористых металлов. Хлористое С. (роговое С.), встречающееся в природе, - прозрачное вещество с перламутровым блеском, кристаллического сложения (принадлежит к правильной системе), уд. вес 5,31 - 5,55; AgCl, получающееся при обменных соляных разложениях в растворах, белого цвета и имеет аморфный творожистый вид; оно получается в кристаллическом виде из растворов в соляной кислоте и в аммиаке уд. в. 5,5 - 5,57. AgCl на свету разлагается. Темп. плавл. его около 490°; при этом получается прозрачная желтоватого цвета жидкость. При застывании AgCl сильно увеличивается в объеме и принимает роговой вид. Оно чрезвычайно мало растворяется в воде, в особенности сплавленное (1 част. в 10 млн. ч. воды); творожистое AgCl растворяется несколько больше, в особенности в кипящей воде. В присутствии других веществ растворимость его сильно возрастает; в этом отношении громадное влияние оказывает соляная кислота, хлористые металлы и аммиак. Растворимость AgCl в присутствии соляной кислоты возрастает с концентрацией (1 ч. его растворяется в 200 ч. крепкой кисл.; при разбавлении двойным количеством воды требуется 600 ч. кислоты на 1 ч. AgCl, при нагревании растворимость увеличивается). 1 ч. AgCl растворяется при обыкн. темп. в 2122 ч. насыщенного раствора КСl, 1050 ч. NaCl, 634 ч. NH 4 C1, 1070 ч. CaCl 2 , 1186 ч. SrCl 2 , 6993 ч. BaCl 2 , 584 ч. MgCl 2 ; при нагревании и здесь растворимость увеличивается. В присутствии аммиака растворимость AgCl сильно возрастает, напр. 1 ч. AgCl растворяется в 12,88 ч. аммиака уд. веса 0,89. Серноватисто-натриевая соль Na 2 S2 O3 легко растворяет AgCl, причем образуется двойная соль NaAgS 2 O3 по уравн.: AgCl + Na 2 S2 O3 = NaCl + NaAgS2 O3 ; то же происходит и по отношению к цианистому калию - образуется двойная соль AgCN·KCN. Присутствие в воде некоторого количества азотной кислоты не увеличивает растворимости AgCl. Водород под давлением вытесняет С. из AgCl; восстановление легко происходит при нагревании в струе водорода; цинк, железо, полухлористая медь, хлористое олово тоже выделяют С. из AgCl. При накаливании йод и бром вытесняют хлор из AgCl. Разложение AgCl под влиянием света имеет важное значение в фотографии и было предметом многочисленных исследований. Свежеприготовленное AgCl, особенно во влажном состоянии, на свету постепенно темнеет, принимает фиолетовый оттенок и выделяет хлор; изменение это происходит как при хранении AgCl в запаянных трубках, так и под водой. Есть указания, что AgCl, полученное и высушенное в темноте над серной кислотой, на свету не изменяется, так что влажность играет какую-то роль при разложении AgCl. Кэри-Ли нашел, что разложение AgCl происходит, если его подвергать сильному давлению или растиранию с водой в ступке. Подробности об изменении AgCl на свету см. Фотография. С бромом С. дает бромистое С. AgBr. Оно получается теми же способами, как и AgCl: действием брома или бромистого водорода на металлическое С. и при обменном разложении растворимых бромистых металлов (или НВr) с растворимыми (а иногда и нерастворимыми) солями С. Бромистое С. встречается в природе в виде кристаллического минерала бромаргирита, принадлежащего к правильной системе, уд. в. 5,8 - 6. Бромистое С., полученное осаждением в темноте при обыкн. темп. помощью НВr (без избытка НВr), имеет белый цвет; при нагревании до 60 - 70° (или в присутствии бромистого калия при обыкн. темп.) оно желтеет. На свету оно быстро разлагается и становится фиолетовым. Стас отличил несколько видоизменений AgBr: 1) хлопьевидное белое, 2) хлопьевидное желтое, 3) порошковатое, интенсивно окрашенное в желтый цвет, 4) порошковатое белое, 5) крупчатое, слегка желтое, 6) кристаллическое или сплавленное. Уд. вес осажденного AgBr 6,4 - 6,5, при получении в обыкн. условиях оно имеет хлопьевидный, творожистый вид; в кристаллическом виде AgBr получается из его растворов в бромистоводородной кислоте. Бромистое С. плавится при 420° и при застывании образует желтоватую прозрачную роговую массу. Оно чрезвычайно мало растворяется в воде (по Стасу, 1:10 млн.), крепкая соляная и бромистоводородная кислоты растворяют его; растворимость в аммиаке меньше, чем для AgCl, напр., 10% аммиака требуется 260 куб. стм на 1 ч. AgBr, тогда как для 1 ч. AgCl его нужно только 17 куб. стм. В присутствии бромистого калия или натрия и хлористого аммония растворимость в воде AgBr увеличивается. Водород или цинк с серной кислотой восстановляют AgBr. Хлор и хлористые металлы переводят его в AgCl, а иод и йодистые металлы в AgJ. Серная кислота разлагает AgBr с образованием НВr. Разложение AgBr на свету представляет еще большую важность для фотографии, чем хлористого С. (см. Фотография). С йодом С. образует полуиодистое Ag4J 2 и йодистое С. AgJ. Полуйодистое С . получено Гюнцем (Gunz) при действии йодистого водорода на полуфтористое С. Йодистое С. AgJ получается прямым соединением С. с йодом (теплота образования AgJ, по Бертело = 14300 кал.) и при действии иодистоводородной кислоты на С.; последняя реакция идет при обыкн. темп. и гораздо легче, чем вытеснение серебром водорода из соляной кислоты. Водный раствор KJ или расплавленный KJ также образуют с С. AgJ. Легче всего йодистое С. получается при обменном разложении растворов йодистых металлов с растворимыми солями С. Йодистое С. бывает аморфное и кристаллическое; кристал. AgJ диморфно: является в формах гексагональной и квадратной системы. Получаемое при обменных разложениях обыкновенно аморфно; растворяя его в крепкой йодистоводородной кислоте и медленно испаряя раствор, получают гексагональные призмы йодистого С. (A g J, встречающееся в природе, кристаллизуется тоже в гексагональной системе и изоморфно с сернистым кадмием). При нагревании выше 146° или под давлением 2475 атм. при обыкн. темп. AgJ из гексагональной системы переходит в квадратную, при чем поглощается около 1600 кал. Уд. вес аморфного AgJ около 5,5 - 5,6 и кристал. ок. 5,6 - 5,7; Физо нашел, что при нагревании от - 10° до 70° AgJ не расширяется, а сжимается (по другим, сжатие продолжается до 142°, при каковой темп. плотность AgJ максимальная). Йодистое С. плавится при 550° (Кольрауш) - 450° (Lodwell) и дает желтую или бурую жидкость, которая образует при застывании роговую массу. Йодистое С. в воде нерастворимо; аммиак растворяет его в ничтожном количестве (1 ч. AgJ в 2500 ч. [около] аммиака уд. веса 0,89 -0,96), оно растворяется в крепком растворе KJ и при кипячении в NaCl, KCl. Серноватисто-натриевая соль мало растворяет его, а крепкая иодистоводородная кислота значительно. Водород восстановляет AgJ при накаливании; крепкая серная или азотная кислота и щелочи, КНО, NaHO, при нагревании разлагают его. AgJ разлагается на свету, подобно AgCl, AgBr, но труднее (предполагают, что при этом образуется полуйодистое С.). Для AgJ известны двойные соли с KJ и HJ. Со фтором С. дает полуфтористое и фтористое С. ,Ag4 F2 и AgF. Гюнц получал Ag 4 F2 , нагревая насыщенный раствор фтористого С. с серебряной пылью; получается порошок бронзового цвета, который легко распадается на С. и AgF; при образовании поглощается 700 кал. Фтористое С. AgF получается при растворении Ag 2 O или углекислого С. Ag 2 CO3 во фтористоводородной кислоте. AgF - бурое или желтое вещество, растворимое в воде; подобно фтористым щелочам, оно очень гигроскопично и на воздухе расплывается. Водород, хлор, бром и йод разлагают его при накаливании. Известны соединения его с водой (напр. AgF·H 2 O, AgF·2H2 O), с HF (напр. AgF·HF) и др.

С серой С. дает полусернистое и сернистое С . Ag4 S и Ag 2 S. Полусернистое С. получается при действии сероводорода на Ag 4 F2 в виде черного аморфного вещества. Слабая азотная кислота растворяет его при нагревании; также растворяет его крепкая серная кислота (без выделения серы) и концентрированный раствор KCN. При стоянии Ag 4 S водой разлагается на металлич. С. и Ag 2 S. Сернистое С. Ag 2 S получается при накаливании С. в парах серы или в струе Н 2 S, при сдавливании (до 7000 ат.) смеси металлич. С. с серой, при действии H 2 S или сернистых щелочей на растворы серебряных солей и пр. Обыкновенно получающееся Ag 2 S аморфно, кристаллизуется же оно в формах правильной и гексагональной системы. Водород разлагает его при нагревании; при обжигании на воздухе Ag 2 S дает Ag и сернистый газ. Азотная кислота растворяет Ag 2 S, при этом выделяется сера (отличие Ag 2 S от Ag 4 S); KCN тоже растворяет его; в аммиаке и сернистом аммонии оно не растворяется. Сернистое С. образует многочисленный двойные соединения с сернистым свинцом, мышьяком, медью, сурьмой, калием и пр. С углеродом С. образует Ag 4 C (получается при накаливании С. с сажей), Ag 2 C, Ag2 C2 . Известны также соединения С. с мышьяком, сурьмой, кремнием и пр.
(кислородных кислот). Наибольшее значение имеет азотнокислое С . AgNO3 , которое было известно еще алхимикам под разными названиями (Crystalli Dianae, Magisterium argenti, Lapis infernalis в новейшей медицине и т. д.). Наиболее просто получается AgNO 3 растворением металлического С. в разбавленной азотной кислоте при нагревании (при этом выделяются окислы азота). Для растворения С. нельзя брать крепкой азотной кислоты, потому что AgNO 3 в ней плохо растворяется и, покрывая С. как бы коркой, затрудняет доступ к нему кислоты. В дополнение к сказанному о свойствах AgNO 3 в ст. Ляпис (см.) добавим следующее. Насыщенный водный раствор его кипит при 125°. Водный спирт растворяет AgNO 3 тем сильнее, чем больше спирт содержит воды. При 15° 100 ч. 95% спирта растворяют 3,8; 80% - 10,3; 70% - 22,1, 60% - 30,5; 50% - 35,8; 40% - 56,4; 30% - 73,7; 20% - 107; 10% - 158. При повышении темп. растворимость в спирте увеличивается; при 50°, напр., она возрастает почти вдвое. Эфир растворяет ничтожное количество AgNO 3 . Хлор и йод в водном растворе дают при действии на AgNO 3 хлорноватые или йодноватые соли, напр.: 6AgNO 3 + ЗСl 2 + ЗН 2 O = 5AgCl + AgClO3 + 6HNO3 . Азотнокислое С. поглощает в сухом состоянии газообразный аммиак и дает соединение AgNO 3 3H3 N. При действии аммиака на водный раствор AgNO 3 в первый момент происходит осадок, который растворяется в избытке аммиака; при сгущении раствора получаются большие ромбические кристаллы AgNO 3 3NH3 . Азотнокислое С. образует много двойных солей, напр., с азотнокислыми солями аммония, калия, натрия, лития, свинца и пр. Азотистокислое С. AgNO2 получается при нагревании AgNO 3 или двойным разложением растворимых солей С. с азотистокислыми щелочными металлами, напр.: AgNO 3 + KNO2 = AgNO2 + KNO3 или Ag 2 SO4 + Ва(NO 2 )2 = 2AgNO2 + BaSO4 и пр. AgNO 2 - кристаллическое вещество, легко разлагающееся при нагревании (особенно во влажном состоянии), растворяется в воде гораздо хуже, чем AgNO 3 , легко растворяется в аммиаке, дает двойные соли с азотистокислыми солями др. металлов и пр. Сернокислое С . Ag2 SO4 получается или растворением С. в серной кислоте при нагревании, или разложением серебряных солей, напр. AgNO 3 , при выпаривании с серной кислотой. Ag 2 SO4 - кристаллическое вещество, мало растворимое в воде (100 ч. воды при 18° растворяют 0,58 ч. Ag 2 SO4 ), довольно прочное (разлагается при очень высокой темп.). Углекислое С . Ag2 CO3 образуется проще всего при двойном разложении AgNO 3 с поташом или содой. Оно не растворимо в воде; при нагревании выше 100° происходит отчасти выделение СО 2 . Фосфорнокислое С . Ag3 PO4 получается при двойном разложении фосфорнокислого натра Na 2 PO4 или Na 3 PO4 с растворимыми солями С. Фосфорнокислое С. представляет кристаллич. вещество желтого цвета, нерастворимое в воде; растворяется в азотной, уксусной, фосфорной и др. кислотах, в аммиаке и пр. Хромовокислое С . Ag2 CrO4 получается при двойных разложениях серебряных солей с хромово-калиевой солью K 2 CrО 4 ; темно-красное вещество, нерастворимое в воде; растворимо в аммиаке и азотной кислоте; если при разложении брать двухромовокалиевую соль вместо K 2 CrO4 , то получается двухромовокислое С., которое несколько более растворимо в воде. Хлорноватокислое С. AgClO 3 получается при пропускании хлора в воду, в которой взболтана окись С. При этом образуется сначала хлористое С. и хлорноватистая кислота НСlО, дающая с Ag 2 O хлорноватистокислое С. AgClO, напр.: Ag 2 O + Cl2 + H2 O = AgCl + AgClO + H2 O; хлорноватистокислое С. разлагается в свою очередь на AgCl и AgClO 3 по уравн. 3AgClO = 2AgCl + AgClO 3 . Хлорноватокислое С. на свету постоянно, недурно растворяется в воде, при нагревании (выше 270°) разлагается, выделяя кислород; сернистая кислота в водном растворе восстановляет его до AgCl, окисляясь сама в серную кислоту и пр. Бромноватокислое AgBrO3 и йодноватокислое С . AgJО 3 получается при действии брома или йода на окись С. или при обменном разложении азотно-серебряной соли с бромноватокислым или йодноватокислым калием. AgBrO 3 и AgJO 3 в воде очень мало растворимы, на свету не изменяются, действуют окислительно на органические вещества и пр. Серебряные соли органических кислот в большинстве случаев при накаливании разлагаются, выделяя металлическое С.; многие соли при этом взрывают, напр., щавелево-серебряная Ag 2 C2 O4 .

С. образует многочисленные сплавы с другими металлами. Присутствие меди делает более звонким, более твердым; сплавы С. с медью более прочны, менее стираются, и потому в таком виде С. и идет для чеканки монет, для производства украшений и пр. С увеличением содержания меди цвет сплавов более и более приближается к красному, темп. плавл. понижается (до некоторого предела, затем она снова увеличивается). Со свинцом С. сплавляется легко и во всех пропорциях, чем пользуются для извлечения С. (см. С. металлургия). При застывании подобных сплавов выделяются определенные соединения С. со свинцом. С золотом С. тоже сплавляется во всех пропорциях (см. Золото). Так же легко получаются сплавы с платиной, никелем, цинком, оловом, ртутью, кадмием и другими металлами.

Определение атомного веса С. было предметом замечательных по своей точности работ Стаса. Прежде всего Стас определял синтезом, какое количество хлора, брома и йода соединяется с 100 ч. С. для образования хлористого, бромистого и йодистого С.; с другой стороны, произведя разложение хлорновато- AgClO 3 , бромновато- AgBrO 3 и йодновато- AgJO 3 серебряных солей, он нашел отношение между весом кислорода, заключающегося в них, и хлористым, бромистым и йодистым С., получающимися при разложении (напр.: AgClO 3 = AgCl + O3 ). Предполагая, что в частице этих солей находится на 1 атом С. 1 атом галоида и 3 атома кислорода и принимая атомный вес кислорода 16, можно было вычислить атомный вес С., а вместе с тем и атомные веса хлора, брома и йода. Чтобы исключить погрешности метода, Стас должен был производить как анализы, так и синтезы различными способами. Напр., для определения состава хлористого серебра он определенную навеску С. растворял в азотной кислоте и разлагал полученное азотнокислое С. соляной кислотой, хлористым натрием, нашатырем и пр. Также и хлорновато-серебряная соль разлагалась то нагреванием, то действием сернистой кислоты и пр. Эти исследования со всеми принятыми предосторожностями потребовали долгие годы усиленной работы. Атомный вес С., зная состав AgCl, AgBr, AgJ, найден из анализа AgClO 3 - 107,937; AgBrО 3 - 107,921; AgJO3 - 107,928. Кроме того, Стас определил отношение между весом серы и С. в сернистом С. Ag 2 S и затем отношение между весом кислорода и сернистым С. в сернокислом С. Ag 2 SO4 , откуда был вычислен атомный вес С. Беря среднее из всех отдельных определений, Стас нашел атомный вес С. равным 107,93. Еще раньше Стаса Мариньяк определил его равным 107,928. При всех своих исследованиях Стас исходил из определенной навески С., в чистоте которого он убедился многими опытами. В конце 70-х годов Дюма (учитель Стаса) выразил сомнение в этом: именно, приготовляя чистое С., Стас должен был плавить его на воздухе, и Дюма указал, что при этом оно растворяет газы, которые отчасти остаются в нем и при застывании и выделяются при нагревании в пустоте даже раньше плавления С. По опытам Дюма, количество их в 1000 г до 0,25 г. Стас ввиду этого вновь приступил к продолжительной работе, результаты который выяснились только после его смерти. Перечисляя опыты Стаса, Кларк нашел для атомного веса С. 107,675 (при H = 1) и 107,023 (при О - 16). Для получения химически чистого С. Стас применял несколько способов. Продажное С., содержащее главным образом медь (серебряная монета), растворялось в слабой азотной кислоте, жидкость выпаривалась досуха, полученные соли сплавлялись для разложения азотнокислой соли платины, которая иногда встречается в С. (напр., во франц. монете). Сплавленная масса растворялась в небольшом количестве воды и фильтровалась; по разбавлении водой AgCl осаждалось чистой соляной кислотой и промывалось сначала горячей водой, подкисленной НСl, затем чистой водой. По высушивании AgCl растиралось в порошок, нагревалось продолжительное время с царской водкой и вновь промывалось водой. Для восстановления оно нагревалось при 70° - 80° с молочным сахаром в растворе чистого поташа. Осажденное С. промывалось водой, кипятилось со слабой серной кислотой, высушивалось, смешивалось с 5% сухой и чистой буры, содержавшей 10% селитры, и сплавлялось. С. отливалось в формы, выложенные каолином; слитки С. очищались от каолина сначала механическим путем, затем накаливанием в поташе и промывкой водой. Разрезав С. на мелкие порции стальными ножницами, его нагревали со слабой соляной кислотой для удаления следов железа, попавшего из ножниц, промывали аммиаком, водой и, нагрев до высокой температуры, помещали в склянку с притертой пробкой. В другом случае, растворив монету в азотной кислоте и сплавив полученные соли, Стас растворял массу в слабом аммиаке и прибавлял к раствору после фильтрования чистый сернистокислый аммоний (NH 4 )SO3 . При стоянии и при некотором нагревании происходило восстановление С. Выделившееся С. промывалось аммиаком и чистой водой и сплавлялось. Для получения чистого С. его выделяли иногда в виде AgCl и сплавляли с углекислым калием, натрием или растворяли в цианистом калии и осаждали током, напр., на посеребренной фарфоровой пластинке. Полученное С. Стас иногда подвергал перегонке. Для этой цели он делал два небольших углубления в куске извести, полученной из чистого мрамора; углубления соединялись желобком, и в одно из них помещалось С. Этот кусок извести покрывался другим куском, который имел два отверстия, лежащие как раз над углублениями. В одно из них вставлялась горелка для гремучего газа с платиновым наконечником, другое отверстие служило для выхода газов. Пары С. конденсировались в находившемся здесь углублении.

Аллотропическое

С. В 1889 г. Кери-Ли (Carey Lea) показал, что С. может быть получено в нескольких видоизменениях, из которых некоторые растворимы в воде. 1) 200 куб. стм 10% раствора AgNO 3 смешивают с жидкостью, содержащей 200 куб. стм 30% раствора железного купороса, 280 куб. стм 40% раствора лимоннокислого натрия и 50 куб. стм 10% раствора соды; при смешивании происходит восстановление С. железным купоросом и получается осадок лилового цвета, который промывается лимоннокислым аммонием и затем водным 95% спиртом. При промывании цвет осадка переходит в синий. При высыхании он делается голубым. Содержание С. в сухом веществе 97,23%, остальное лимонная кислота и окись железа; уд. в. его 9,58. В воде оно растворяется, образуя темно-красный раствор; от прибавления сернокислых, азотнокислых, лимоннокислых щелочей в известном количестве оно выделяется из раствора в виде синего осадка, который способен вновь растворяться в чистой воде; если же к раствору прибавить сернокислых солей магния, меди, железа, никеля и др., то получается красный осадок, уже не растворимый в воде; эта вторая разновидность С. содержит 97,17% его. В присутствии буры или сернокислых щелочей она растворяется в воде, образуя раствор, отличающийся от раствора первой разновидности. Если приготовить две жидкости: с одной стороны - 107 куб. стм 30% раствора железного купороса, 200 куб. стм 20% раствора сегнетовой соли и 800 куб. стм воды, и с другой - 200 куб. стм 10% раствора AgNO 2 , 200 куб. стм 20% раствора сегнетовой соли и 800 куб. стм воды и эти жидкости смешать, то выделяется осадок красного цвета; затем он становится темно-синим и при высыхании принимает красивый золотисто-темный цвет; он содержит 98,75% С., уд. вес 8,51. Все эти три видоизменения малопрочны и легко переходят в обыкновенное С.: для золотистого видоизменения часто достаточно одного сотрясения, чтобы оно превратилось в обыкновенное С. При нагревании, при действии крепких соляной и серной кислот на различные видоизменения С. получается обыкновенное С. Растворы С. подобны растворам коллоидов; они свертываются под влиянием оснований, солей, кислот, нагревания, охлаждения и пр. При переходе растворимого С. в обыкновенное выделяется тепло (около 60 кал.). Многие исследовали различные физические свойства растворов С.; главным образом изучалась их электропроводность. Результаты получались крайне варьирующие. Нельзя с полной уверенностью сказать, имеется ли здесь действительно особое состояние С. или какое-нибудь соединение его. Кери-Ли указал и другие способы получения различных видоизменений С. Растворяют 40 г едкого натра и 40 г декстрина в 2 л воды и сюда приливают понемногу раствор 28 г AgNO 3 в небольшом количестве воды; вначале получается осадок, который затем растворяется и жидкость окрашивается в темно-красный цвет (почти черный). Серная кислота осаждает из раствора С., которое, смотря по обстоятельствам, получается то в виде голубого, то в виде золотого видоизменения.

Анализ серебряных соединений.

С. отделяется почти от всех других металлов на основании нерастворимости хлористого С.; если присутствуют соли свинца и закисные соединения ртути (для которых хлористые соединения плохо растворимы), лучше предварительно удалить эти металлы. Кроме того, осаждение С. в виде AgCl не может быть применено в присутствии свободного аммиака, цианистого калия, серноватисто-натриевой соли и т. п. соединений, которые растворяют хлористое С. Вещество, содержащее С., переводится в раствор; если оно нерастворимо в воде, его растворяют в азотной кислоте, напр., при анализе многих сплавов; в присутствии соединений С., не растворимых в азотной кисл., напр. AgCl, AgCN и проч., анализируемое вещество предварительно сплавляют с содой и др. Для осаждения хлористого С. серебряный раствор подкисляют азотной кислотой, нагревают до 70° и приливают к нему соляной кислоты в небольшом избытке; при размешивании палочкой мелкораздробленный осадок AgCl собирается в виде творожистой массы. Жидкость оставляют стоять (не на свету) 12 час. для полного осаждения AgCl и декантируют через фильтр; осадок промывается сначала горячей водой, подкисленной азотною кислотою, декантацией, а затем на фильтре. Высушенный осадок с фильтра переносится в фарфоровый тигелек, здесь осторожно сплавляется и взвешивается; фильтр сожигается отдельно (хлористое С. иначе восстановляется в металлическое), пепел кладется в тот же тигелек, который вновь взвешивается. Кроме хлористого С., для отделения и для определения С. применяется сернистое и цианистое С.; для определения веса их высушивают на взвешенном фильтре при 100°. Иногда С. определяется в металлическом виде, особенно это практикуется при анализе серебряных солей органических кислот, которые во многих случаях при прокаливании разлагаются, выделяя все С. в свободном состоянии; при анализе галоидных соединений С. восстановление производится в струе водорода и пр. Для определения С. электролизом серебряные соединения растворяют в цианистом калии и разлагают током 0,2 - 0,4 А (см. Электролитический анализ). Если вместе с С. находятся металлы, которые дают растворимые двойные соли с щавелевокислым аммонием, напр. медь, цинк, кадмий и пр., то С. отделяется от них на основании нерастворимости щавелевокислого С.; последнее промывается, растворяется в цианистом калии и подвергается электролизу; подобным же образом поступают и с хлористым С. Определение С. титрованием производится, обыкновенно, в азотнокислом растворе; здесь существуют два главнейших способа. Первый, наиболее простой (способ Фольгарда), основан на образовании нерастворимого роданистого С. при действии на серебряные растворы роданистого аммония AgCNS; конец реакции узнается при помощи сернокислой соли окиси железа, с которою роданистый аммоний дает роданистое железо красного цвета, лишь только все С. будет в осадке. Для приготовления раствора роданистого аммония и определения его титра поступают следующим образом. Растворяют 10,766 г чистого С. в чистой (в особенности не содержащей хлора) азотной кислоте уд. в. 1,2, нагревают для удаления окислов азота (которые вредят чувствительности окраски от роданистого железа) и разбавляют до 1 литра. Так как продажный роданистый аммоний гигроскопичен и не может быть высушен без разложения, то его берут примерно 7,58 г и растворяют в 1 литре. Взяв 10 - 20 куб. стм серебряного раствора, разбавляют его 200 куб. стм воды, приливают к нему 5 куб. стм насыщенного раствора двойной серно-аммиачно-железистой соли и титруют роданистым аммонием до появления розового окрашивания при постоянном размешивании жидкости. Установив соотношение между растворами, разбавляют роданистый аммоний так, чтобы 1 куб. стм его был эквивалентен 1 куб. стм серебряного раствора, или 0,010766 С. При анализе серебряных соединений соблюдаются условия, в которых устанавливался титр роданистого аммония; именно: растворы подкисляются азотной кислотой, разбавляются, к ним прибавляется 5 куб. стм серножелезистой соли и пр. На точность способа не оказывает влияния присутствие меди (до 70%), свинца, кадмия, олова, железа, цинка, марганца, висмута, сурьмы, мышьяка. Вместо роданистого аммония берется иногда роданистый калий. Другой способ объемного определения С. основан на применении титрованного раствора поваренной соли: AgNO 3 + NaCl = AgCl + NaNO3 ; конец реакции узнается по прекращению образования осадка хлористого С.; так как хлористое С. несколько растворяется в присутствии азотнокислого С., поваренной соли и селитры, то при точных анализах происходящие отсюда ошибки стараются исключить эмпирическим путем. Берут навеску хлористого натрия 5,4145 г и растворяют в 1 литре воды; 1 куб. стм этого раствора отвечает 0,01 г С., и раствор называется нормальным: хлористый натрий должен быть совершенно чистый (не содержать никаких следов кальция, магния, серной кислоты и пр.); для навески его растирают в порошок и высушивают при 300°. Взяв 100 куб. стм этого раствора, разбавляют его водой до 1 литра; получают децинормальный раствор; затем растворяют 10 г чистого С. в нескольких куб. стм чистой азотной кислоты и, разбавив его до 1 литра, получают нормальный раствор С.; наконец, растворив 1 г С. в азотной кислоте, готовят децинормальный серебряный раствор. Для приближенных анализов достаточно иметь одни нормальные растворы. При анализе, напр., серебряного сплава растворяют 1 г его в небольшом количестве азотной кислоты (не содержащей хлора) и быстро прибавляют к нему из бюретки нормального раствора хлористого натрия, пока образуется осадок; затем старательно взбалтывают, пока осадок не осядет и жидкость не осветлеет, и приливают раствор NaCl по каплям до тех пор, пока прилитая капля не перестанет вызывать муть в жидкости; количество куб. стм употребленного раствора дает прямо % содержание С. в сплаве с точностью до 0,1 - 0,05%. Иногда к анализируемому раствору сразу приливают хлористого натрия в небольшом избытке и обратно титруют нормальным раствором серебра. При точных анализах прежде всего точно определяют количество раствора хлористого натрия, потребного для осаждения 1 г серебра (чтобы исключать ошибки от растворения AgCl). Для этого растворяют 1 г серебра и прибавляют к нему сразу 100 куб. стм нормального раствора NaCl, пользуясь лучше всего пипеткой с двумя черточками (на узкой шейке и узком конце); затем продолжают титровать децинорм. раствором поваренной соли; при избытке прибавленного NaCl обратно титруют децинормальным серебряным раствором и таким образом точно определяют титр хлористого натрия. При анализе, напр., сплава сначала приблизительно узнают в нем содержание С. (вышеуказанным путем), затем берут навеску такую, чтобы в ней был 1 г С., растворяют ее в азотной кислоте, прибавляют 100 куб. стм нормального раствора NaCl и затем кончают титрование децинормальными растворами N a Cl или AgNO 3 . Существуют и другие способы объемного определения С., напр., способ Пизани , основанный на обесцвечивании йодного крахмала азотнокислым С. Относительно определения С. паяльной трубкой, микрохимическим путем - см. Микрохимия и Паяльная трубка.

С. П. Вуколов

С. и его препараты

(мед.). - Металлическое С. в форме тонких листочков употребляется почти исключительно для серебрения пилюль. Из неорганических соединений С. чаще других в медицине употребляется азотно-серебряная соль, которая, смотря по концентрации, служит для применения в качестве едкого разрушающего (ляпис) и раздражающего вещества или же применяется как вяжущее и антисептическое средство. При прижиганиях ляписом отдают предпочтение сплавленному азотнокислому С., которое нередко, для уменьшения расплываемости, сплавляется в форме палочки предварительно с двойным количеством (азотно-калиевой) селитры. Азотно-серебряная соль образует с белковыми веществами растворимые в избытке белка альбуминаты; в слабых растворах ляпис суживает кровеносные сосуды - иногда до половины нормального просвета сосуда - и уменьшает отделения из слизистых оболочек. При легком прикосновении палочкой ляписа к смоченной неповрежденной коже появляется белый налёт, постепенно затем окрашивающийся в черный цвет вследствие восстановления серебряной соли. Измененный слой кожицы через некоторое время сморщивается, слущивается и заменяется новым слоем эпидермиса. При более энергичном прижигании ляпис проникает через слой эпидермиса до глубокого слоя кожи, вызывает сильную боль и припухание прижженного участка, при этом раздражаются чувствительные нервные приборы, кожные сосуды сильно расширяются и создаются условия для образования выпота. На слизистые оболочки и язвенные поверхности слабые и концентрированные растворы азотно - серебряной соли действуют аналогичным образом, но в более резкой степени, а именно слабые растворы вызывают сужение сосудов при умеренной болезненности, крепкие растворы и прижигания ляписным карандашом вызывают сильную боль, расширение сосудов и белый, постепенно темнеющий струп. Азотно-серебряная соль применяется снаружи в виде прижиганий ляписной палочкой или в концентрированных растворах для разрушения мелких новообразований, бородавок, мозолей, при лечении вяло заживающих язв кожи - с целью ускорить течение крови и способствовать таким образом более быстрому заживлению таких язв; при лечении трещин и свищевых отверстий, при гнойном отделении из слизистых оболочек, при полипах и язвенных разращениях, при трахоме соединительной оболочки глаз, при язвах роговицы, полипозных разращениях в слуховом канале. В слабом разведении (0,5 - 2%) при хронических катаральных заболеваниях слизистых оболочек, при катаре носа, гортани и носоглоточного пространства; как антисептическое и вяжущее средство для предохранения глаз от перелойного воспаления - в некоторых родильных домах всем новорожденным впускают в глаза капли 2% раствора ляписа и таким образом предохраняют от заболевания бленнорейным воспалением, которое нередко ведет к потере зрения; для впрыскиваний при уретрите в мочеиспускательный канал. Антисептическими и вяжущими свойствами азотно-серебряной соли пользуются также при лечении некоторых заболеваний желудочно-кишечного канала. Азотнокислое С. назначают также при истерических заболеваниях и при спинномозговых страданиях, в случаях повышенной возбудимости нервной системы; благоприятные результаты, полученные при лечении этих заболеваний, трудно объясняются. Переход С. в кровь при внутреннем употреблении азотнокислой соли происходит в весьма незначительном размере; даже при введении в желудок сравнительно больших, повторно назначаемых доз не наблюдается тех тяжелых расстройств, которые развиваются при остром и хроническом отравлении животных после введения в кровь или подкожную клетчатку некоторых альбуминатов С., двойной соли серноватистокислой окиси С. и натра или азотно-аммиачной окиси С. Соединения С., не свертывающие белка, а именно растворы альбумината или пептоната С., серноватистокислого С. и натра вызывают (даже в относительно небольших дозах) паралич двигательных и дыхательного центров, гиперемию и отек легких и значительную мышечную слабость; 4 грамма 5% белкового раствора С., введенные в кровь, вызывают смерть собаки средней величины через 1/2 ч. при явлениях задушения; 0,2 С. в растворе серноватистокислого натра вызывают почти моментальную смерть. Кровь вследствие перехода гемоглобина в плазму становится более темною и жидкою, в тканях и органах находят многочисленные кровоизлияния; резкие катаральные изменения находили также в слизистых оболочках дыхательных органов и пищеварительного канала; печеночные клетки, эпителий мочевых канальцев, сердце и поперечно-полосатые мышцы подвергаются жировому перерождению. В последнее время рекомендуются различные соединения С. с органическими кислотами, как лимоннокислое С. (итроль), молочнокислое С. (актоль), органическое соединение С. (протаргол) и некоторые др. Все эти препараты обладают значительными антисептическими свойствами, причем указывается на то, что они не раздражают тканей в такой степени, как ляпис, не обладают едкими свойствами и могут поэтому применяться для пропитывания перевязочного материала, для промывания ран и в виде присыпок.

Явления острого и хронического

отравления азотнокислою солью. Введение в желудок сравнительно даже большого кусочка азотно-серебряной соли вызывает только сильные боли в желудке и рвоту. Присутствие соляной кислоты и хлористого натрия в желудке тотчас же ведет к образованию нерастворимого хлористого С. Лечение при остром отравлении должно состоять в немедленном назначении поваренной соли в порошке или растворе. Хроническое отравление С. выражается, главным образом, отложением темного пигмента восстановленного С. в коже, мальпигиевых клубочках, в сосудистых сплетениях головного мозга, в брыжеечных лимфатических железах и некоторых слизистых оболочках. Болезнь эта, носящая название "аргирия", по-видимому, не сопровождается никакими другими серьезными расстройствами в общем состоянии больных, но пятна восстановленного С. ничем не могут быть удалены. Иногда после продолжительного употребления содержащей азотнокислое С. краски для волос наблюдались, кроме пигментации, общее недомогание, чувство тумана в голове, боли в затылке, шум в ушах, слабость зрения и явления желудочно-кишечного катара, но все эти явления проходили с прекращением применения такой краски и оставалась только пигментация, придающая больному вид негра. Ляпис разлагается под влиянием света и в присутствии органических веществ, особенно танина, морфия и др. Растворы медикамента отпускаются из аптеки в темной склянке; для образования пилюльной массы азотнокислое С. обыкновенно прописывают с надлежащим количеством глины, так как в подобных пилюлях не наблюдается разложения азотно-серебряной соли.

Химический элемент совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в… … Википедия

- (хим.; Phosphore франц., Phosphor нем., Phosphorus англ. и лат., откуда обозначение P, иногда Ph; атомный вес 31 [В новейшее время атомный вес Ф. найден (van der Plaats) такой: 30,93 путем восстановления определенным весом Ф. металлического… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (Soufre франц., Sulphur или Brimstone англ., Schwefel нем., θετον греч., лат. Sulfur, откуда символ S; атомный вес 32,06 при O=16 [Определен Стасом по составу сернистого серебра Ag 2 S]) принадлежит к числу важнейших неметаллических элементов.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (Soufre франц., Sulphur или Brimstone англ., Schwefel нем., θετον греч., лат. Sulfur, откуда символ S; атомный вес 32,06 при O=16 [Определен Стасом по составу сернистого серебра Ag2S]) принадлежит к числу важнейших неметаллических элементов. Она… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (фр. Chlore, нем. Chlor, англ. Chlorine) элемент из группы галоидов; знак его Cl; атомный вес 35,451 [Пo расчету Кларке данных Стаса.] при O = 16; частица Cl 2, которой хорошо отвечают найденные Бунзеном и Реньо плотности его по отношению к… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

U (Uran, uranium; при О = 16 атомн. вес U = 240) элемент с наибольшим атомным весом; все элементы, по атомному весу, помещаются между водородом и ураном. Это тяжелейший член металлической подгруппы VI группы периодической системы (см. Хром,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- [хим. Palladium, Pd = 106 [По новым определениям (1894 г., Е. Н. Keiser, M. В. Breed) Pd = 106,2 106,3] один из легких членов платиновой группы металлов, открыт (1803) Волластоном в платиновой руде из Колумбии. Этот металл встречается почти во… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (Platine фр., Platina или um англ., Platin нем.; Pt = 194,83, если О = 16 по данным К. Зейберта). П. обыкновенно сопровождают другие металлы, и те из этих металлов, которые примыкают к ней по своим химическим свойствам, получили название… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона Подробнее аудиокнига


Серебро - давно разведанный человеком металл благодаря тому, что он бывает в природе в состоянии самородка и значит - его не нужно подвергать выплавке.

Серебро- пластичный, ковкий, бело-серебристый металл, режется ножом. Температура расплавления 962 о С, плотность его 10,5 грамм/см 2 , твердость по Бринеллю 25. Показатель коэффициента светового отражения имеет стопроцентный.

Характеристики и виды

Особенность серебра - этот красивый металл теряет спустя некоторое время свою яркость и блеск из-за сероводородного влияния, а это вещество содержится в воздушной массе. Высокие электро- и тепло- проводимости также являются особенностями серебра. Он легче меди и тяжелее золота. Серебро устойчиво к действию щелочей, органических и минеральных кислот. Металл относят к разряду благородных, а некоторые люди считают, что он имеет даже мистическую силу (ассоциации с луной, чистотой, светом, также говорят, что серебра боится всякая нечисть). Этому металлу присвоен номер 47 в таблице Менделеева (периодическая таблица химических элементов).

Кристаллическая решетка серебра - гранецентрированная, кубическая. Условное химическое обозначение металла - Ag.

Существует около 50 известных человеку серебросодержащих природных минералов, но для промышленности важность имеют всего около 15-20 подвидов: самородное серебро, электрумы (золото и серебро), аргентиты (серебро и сера), кюстелиты (серебро и золото), пруститы (серебро и мышьяк-сера), бромаргериты (серебро и бром), стефаниты (серебро и сурьма-сера), дискразиты (серебро и сурьма), фрейбергиты (медь-сера и серебро), полибазиты (серебро и медь-сурьма-сера), аргентоярозиты (серебро и железо-сера), кераргириты (серебро и хлор), пираргириты (серебро и сурьма-сера), агвилариты (серебро и селен-сера) и т.д.

Месторождение и добыча серебра

Серебряные месторождения бывают двух разных видов: серебряные и комплексные, содержащие серебро. Историкам известно, что в Сирии первой имелся собственный источник добычи серебра (в диапазоне 5 тысяч - 3,4 тысячи гг. до н.е.). В России выплавили впервые же этот металл в 1687 году, а в 1701 году построено российский сереброплавильный завод в Забайкалье.

Среди стран, которые славятся наличием серебряных месторождений, можно отметить такие, как: Германию, Перу, Чехию, Испанию, Китай, Канаду, США, Мексику, Австралию, Россию, Польшу, Казахстан, Швецию, Норвегию, Венгрию, Австрию, Румынию, Словакию, Армению, Кипр, Сардинию.

Лидер по серебряной добыче - Перу (3,6 тысяч тонн). Мировые запасы данного металла становят 570 тысяч тонн. Рекордсмен-самородок серебра по величине называется «Серебряный тротуар» и его нашли в интересном виде (поэтому и название такое) - тридцатиметровая пластина двацатитонного веса. Нашли такое чудо в Канаде (в Коболтском месторождении). Серебро содержится в земляном шаре, море, живых организмах, метеоритах.

Применение серебра

Серебро действительно пользуется симпатией человеческих масс и поэтому оно используется в разных отраслях их жизни. Этот металл используют в чистом виде, в структуре сплавов, в разнообразных соединениях химических элементов. Металл с высокой долей серебра очень часто используют в ювелирном производстве, а со средней долей - в широчайшего спектра технике (диапазон начинается сильноточными выключателями и заканчивается жидкостными ракетными двигателями).

Серебро - красивое, благородное, яркое, поэтому оно идет на чеканку наград, монет, ювелирных товаров. Благодаря хорошей электропроводности - его применяют в электротехническом, электронном и СВЧ производстве. Йодистое серебро применяют для климатической корректировки (для уничтожения туч). Благодаря светочувствительности этот металл применяют в фото- и киноиндустрии. Серебро ускоряет в реакции окисления, также может быть использовано в роли дезинфицирующего вещества. Имея высокую отражающую способность - серебро покрывает зеркала. Кроме этого, этот благородный металл еще и зарегистрирован в качестве пищевой добавки Е174. Серебро - тяжелый металл, поэтому его используют с большой осторожностью в медицине (коллоидное серебро).

Серебро – химический элемент с атомным номером 47 в периодической системе Д.И. Менделеева. Химическая формула серебра Ag.

Ломоносов писал о серебре, что этот металл, если он свободен от примесей, кажется белым, как мел. И это действительно так.

Серебро было известно ещё в IV тысячелетии до нашей эры. Этот драгоценный металл, как и золото, в природе встречается в виде самородков. Поэтому человечество познакомилось с ним без помощи учёных. В древнем Египте серебро называли «белым золотом». Добывать его было труднее, чем золото. Поэтому в те времена оно и стоило дороже золота.

Считается, что свое латинское название argentum серебро получило от греческого argos – белый, сверкающий, блистающий.

В природе серебро встречается как в виде самородков, так и в виде редких минералов, которыевходят в полиметаллические руды – сульфиды меди, свинца, цинка.Серебряные самородки имеют достаточно большой вес. Известно, что самый крупный самородок весил 13,5 т. В серебряных самородках часто содержатся примеси золота и ртути, реже – платины, меди, висмута, сурьмы.

Химические свойства


Серебро – металл, и обладает всеми свойствами металлов. Но химическая активность серебра мала. В ряду напряжений металлов, называемым также электрохимическим рядом активности металлов, серебро находится почти в конце.

При обычной температуре серебро не взаимодействует с кислородом, азотом, водородом, кремнием и углеродом.

В реакцию с серой вступает при обычных условиях. В результате образуется сульфид серебра.

2Ag + S = Ag 2 S

С галогенами реагирует при нагревании.

2Ag + Br 2 = 2AgBr

Все знают, что изделия из серебра постепенно темнеют. Почему так происходит? Оказывается, причина в том, что серебро вступает в реакцию с сероводородом, находящимся в воздухе. В результате на поверхности серебра образуется плёнка из сульфида серебра Ag2S .

4Ag + 2H 2 S + O2 = 2Ag 2 S + 2H 2 O

Как серебро реагирует с кислотами? Интересно, что с азотной кислотой реакция происходит по-разному в зависимости от концентрации кислоты. Так, с концентрированной азотной кислотой серебро даёт нитрат серебра AgNO3 и диоксид азота NO2

Ag +2HNO 3 = AgNO 3 + NO 2 + H 2 O

А в результате реакции с разбавленной азотной кислотой образуется нитрат серебра AgNO3 и оксид азота NO

3Ag +4HNO 3 = 3AgNO 3 + NO + 2H 2 O

Серебро реагирует только с концентрированной серной кислотой

2Ag + 2H 2 SO4 = Ag 2 SO 4 + SO 2 + 2H 2 O

С соляной кислотой реакция происходит при высоких температурах

2Ag + 2HCl = 2AgCl + H 2

Физические свойства и применение серебра


Серебро – удивительно пластичный металл. Из него можно сделать лист толщиной всего в 0,00025 мм. А из крупицы весом в 1 г получается тончайшая проволока длиной в 2 км.

Серебро великолепно проводит электрический ток и тепло. Кроме того, оно способно выдержать колоссальную нагрузку. Из него изготавливают различные контакты в устройствах, используемых на комических ракетах, ядерных установках, подводных лодках, вычислительной технике и др.

Прекрасная отражательная способность серебра позволяет использовать его в производстве зеркал, телескопов, микроскопов, различных оптических приборов.

Широко применяется серебро в ювелирном деле. Кольца, броши, столовые сервизы до сих пор украшают быт человека.

Из серебра чеканят монеты.

Говоря о серебре, нельзя не сказать о его способности очищать воду от различных микроорганизмов.

В 327 году до н.э. греческая армия под предводительством Александра Македонского вторглась в Индию. Казалось, ничто не могло остановить полководца, впереди не было никаких преград. Но вдруг началась эпидемия желудочно-кишечных заболеваний. Солдаты взбунтовались. Греки вынуждены были вернуться домой. Но заболевшие были в основном среди обычных солдат. Только через две тысячи лет учёные поняли, почему почти не болели военачальники. Солдаты пили из обычных оловянных кружек, а военачальники – из серебряной посуды. То есть серебро убивало болезнетворные бактерии. Позже было установлено, что всего лишь несколько миллиардных долей грамма серебра способны уничтожить бактерии в 1 л воды.

Соединения серебра широко используют при изготовлении препаратов, обладающих бактерицидными свойствами.

В химической промышленности серебро применяется как катализатор при производстве органических соединений.