Обмен энергии. Обмен энергии организма

Обмен веществ непрерывно протекает во всех клетках, тканях и системах организма и способствует поддержанию жизнедеятельности и сохранению постоянства внут­ренней среды. В результате обменных процессов обра­зуются вещества, необходимые для построения клеток и тканей.

Посредством обмена веществ обеспечивается поступление в организм энергии, необходимой для его жизне­деятельности, восстанавливается потеря воды (водный обмен), удовлетворяется потребность в минеральных веществах (минеральный обмен), витаминах (витамин­ный обмен) возмещается потеря органических веществ, используемых для синтетических процессов (пластиче­ский обмен).

Обмен веществ характеризуется двумя противополож­ными процессами - ассимиляцией и диссимиляцией, которые определяют непрерывную связь организма с окружающей средой.

Ассимиляция - это процесс синтеза необходимых организму веществ и использования их для роста и развития. Источником таких веществ является повсед­невная пища.

Диссимиляция - процесс распада веществ, их окис­ление кислородом и выведение из организма.

Процессы синтеза и распада протекают непрерывно и одновременно и находятся в единстве между собой. Однако в отдельные периоды жизни это равновесие нарушается. Например, в детстве, когда организм интен­сивно растет и развивается, превалируют процессы ассимиляции. Напротив, когда организм стареет или ослаблен болезнью либо голодом, преобладают процессы диссимиляции.

Обмен веществ слагается из белкового, углеводного, жирового, витаминного, минерального и водного обменов, которые тесно связаны сложными биохимическими реакциями.

В регуляции обмена ведущая роль принадлежит центральной нервной системе, которая координирует эти процессы с помощью гормонов. Так, белковому обмену способствует гормон щитовидной железы - тироксин; на жировой обмен влияют гормоны поджелудочной и щитовидной желез, надпочечников и гипофиза; на углеводный обмен - гормон поджелудочой железы - инсулин и гормон надпочечников - адреналин.

В результате обмена веществ образуется также энер­гия, необходимая организму для биохимических реакций и покрытия тепловых и механических затрат. Выделение энергии происходит в результате окисления и расщепле­ния сложных органических веществ, которые поступают с пищей.

В качестве единицы измерения расхода энергии используются калория или джоуль.

Обмен энергии между организмом и окружающей средой осуществляется по законам термодинамики. Организм внутри себя постоянно создает негэнтропии (т.е. поддерживает структурность элементов, распадаясь способны выделять энергию). Для этого прежде всего используется энергия, накопленная в продуктах окружающей среды (в виде макроскопических соединений, поступающих с пищей). Вокруг себя организм создает энтропию, выделяя энергию в виде тепла. Энтропия — это потеря структурности с выделением энергии.

Соотношение между энергией, поступающей в организм и количеством энергии, выделяемой им, называется энергетическим балансом. Если этот баланс будет положительным — то энергоносители задерживаются в организме и наоборот.

Выделяют два уровня обмена энергии: основной обмен (00), или тот уровень обменных процессов в организме, который необходим для его функционирования в условиях физиологического покоя. Этот обмен объединяет затраты энергии на биосинтез, в поддержку концентрационных градиентов различных ионов на оболочках клеток и на деятельность внутренних органов (мозга, сердца, дыхательных мышц, печени, почек и др.).. Уровень основного обмена зависит от возраста, пола, массы тела и роста человека и, исходя из этих параметров, определяется по известным в физиологии таблицами Харриса-Бенедикта. Согласно этим таблицам общий уровень основного обмена (00) рассчитывают в зависимости от пола человека как сумму энергетических затрат исходя из массы тела (определяется по табл. А) и возраста и роста человека (определяется по табл. Б Харриса-Бенедикта). Например, девушка в возрасте 17 лет, масса тела которой составляет 46 кг, а рост 156 см имеет 00 = 1095 +201 = 1296 ккал. При отсутствии таблиц Харриса-Бенедикта величину основного обмена (00) можно рассчитывать с помощью уравнений, приведенных в табл. 5.

У детей уровень массы тела значительно больше, чем у взрослых людей, что объясняется более интенсивными процессами биосинтеза в детском возрасте. Известно, например, чтобы «встроить» одну аминокислоту в цепь белковой молекулы требуется энергия двух молекул АТФ (аденозитрифосфорнои кислоты).

У детей до 5 лет за один час на 1 кг массы тела расходуется примерно 14 — 15 кДж (3,45 ккал) энергии, в 10 лет примерно 9 — 10 кДж (2,26 ккал), в 15 лет — 5,3 — 6,0 кДж (1,33 ккал) и у взрослых людей — 4,2 кДж (1 ккал) на 1 кг массы тела в час. У девушек (женщин) основной обмен примерно на 5% ниже , чем у юношей (мужчин). Средние возрастные изменения уровня основного обмена приведены в табл. 6.

Динамика основного обмена с возрастом плотно связана с энергетическими затратами на рост организма. Чем меньше возраст ребенка, тем относительные затраты энергии на рост больше (рис. ЗО). Например, затраты энергии на рост в возрасте 3 месяца составляют 36%, в ​​возрасте 6 месяцев — 26%, 10-12 месяцев — 21% общей энергетической ценности пищи.

Дополнительно к энергию на любые функции, и на внешнюю работу. Затраты энергии при полной жизнедеятельности называются общим обменом.

По данным А. П. Матвеева (2003) употребление белковой пищи повышает уровень обмена на 30%; жирной и углеводистой пищи — на 15%, а обычной смешанной пищи на 30-35%. Выполнение нетрудной работы в быту повышает уровень обмена на 30-60%. Физическая умеренная работа и обычные спортивные тренировки могут повышать уровень обмена в 20-25 раз, т.е. больше чем на 2000%. Умственный труд, который не сопровождается мышечными усилиями и эмоциональным напряжением повышает энергетические затраты всего на 2-3%. Если к умственному труду прилагается эмоциональное напряжение, то энергетические затраты могут расти на 40-90%.


Обмен веществ и энергии - это взаимосвязанные процессы, разделение которых связано лишь с удобством изучения. Ни один из этих процессов в отдельности не существует. При окислении энергия химических связей, содержащаяся в питательных веществах, освобождается и используется организмом. За счет перехода одних видов энергии в другие и поддерживаются все жизненные функции организма. При этом общее количество энергии не изменяется. Соотношение между количеством энергии, поступающей с пищей, и величиной энергетических затрат называется энергетическим балансом.

Сказанное можно проиллюстрировать на примере деятельности сердца. Сердце совершает огромную работу. Каждый час оно выбрасывает в аорту около 300 л крови. Эта работа совершается за счет сокращения сердечной мышцы, в которой при этом протекают интенсивные окислительные процессы. Благодаря освобождающейся энергии обеспечивается механическое сокращение мышц, и в конечном счете вся энергия переходит в тепловую, которая рассеивается в организме и отдается им в окружающее пространство. Аналогичные процессы идут в каждом органе человеческого тела. И в каждом случае в конечном итоге химическая, электрическая, механическая и другие виды энергии трансформируются в тепловую и рассеиваются во внешнюю среду. Количество энергии, расходуемое на выполнение физической работы, определяют как коэффициент полезного действия (кпд). Его средняя величина - 20-25%, у спортсменов КПД выше. Установлено, что 1 г белка при окислении выделяет 4,1 ккал, 1 г жира - 9,3, air углеводов - 4,1 ккал. Зная содержание белков, жиров и углеводов в пищевых продуктах (табл. 1), можно установить их калорийность, или энергетическую стоимость.

Мышечная деятельность, активный двигательный режим, физические упражнения и спорт связаны со значительным расходом энергии. В некоторых случаях он может достигать 5 000 ккал, а в дни интенсивных и объемных тренировок у спортсменов и того более. Такое увеличение энергозатрат необходимо учитывать при составлении пищевого рациона. Когда в пище присутствует большое количество белка, значительно удлиняется процесс ее переваривания (от двух до четырех часов). За один раз целесообразно принимать до 70 г белка, так как излишки его начинают преобразовываться в жир. А представители некоторых видов спорта (например, гимнасты, бодибилдеры и др.) всячески избегают накопления лишнего жира и предпочитают энергию получать из растительной пищи (например, фруктовая пища связана с образованием быстрых углеводов).

Питательные вещества можно замещать, учитывая их калоричес-кую ценность. Действительно, с энергетической точки зрения 1 г углевода эквивалентен (изодинамичен) 1 г белка, так как у них одинаковый калорический коэффициент (4,1 ккал), а 1 г белка или углевода эквивалентен 0,44 г жира (калорический коэффициент жира 9,3 ккал). Отсюда следует, что человек, суточный расход энергии которого 3 000 ккал, может полностью удовлетворить энергетические нужды организма, потребляя в сутки 732 г углеводов. Но для организма важна не только общая калорийность пищи. Если человек достаточно долго потребляет только жиры или белки, или углеводы, в его организме возникают глубокие изменения в обмене веществ. При этом нарушаются пластические процессы в протоплазме клеток, наблюдается сдвиг азотистого равновесия, образуются и накапливаются токсические продукты.

Таблица 1. Состав наиболее важных пищевых продуктов (в % сырого вещества)

Название продукта Вода Белок Жир Углеводы Клетчатка
1 2 3 4 5 6
Говядина средняя жирная 75,52 20,59 5,35
Свинина 58,74 18,38 21,40 - -
Мясо курицы 47,40 14,51 37,34 - -
Яйцо куриное 72,83 19,84 5,10 -
Желток куриного яйца 73,67 12,55 12,11 - -
Белок куриного яйца 51,03 16,12 31,39
Печенка 85,50 12,87 0,25
Вобла сушеная 71,60 19,38 4,65 - -
Икра зернистая 19,80 41,30 14,12 - -
Кари 53,16 25,99 16,31 - -
Осетр 77,29 20,41 1,47 - -
Сельдь соленая 73,30 17,87 3,52 - -
Молоко коровье 57,84 18,43 14,48 - -
Масло сливочное 87,27 3,39 3,68 4,94 -
Творог 12,01 1,07 86,57 0,60
Сыр 80,60 14,58 0,59 1,16
Манная крупа 36,31 26,21 29,58 3,39
Гречневая крупа 13,05 9,43 0,94 75,92 0,21
Рис 13,67 10,67 1,85 67,85 1,71
Ржаной хлеб 13,17 8,13 1,29 75,50 0,88
Пшеничный хлеб 43,58 7,84 0,73 43,70 1,55
Горох 34,69 10,68 0,32 52,41 0,26
Орехи грецкие 11,28 25,78 3,78 52,99 3,69
Картофель 7,18 16,74 58,47 12,99 2,93
Морковь 76,13 2,14 0,22 19,56 05,99
Капуста свежая 86,77 1,18 0,29 9,06 1,67
Огурцы 90,11 1,83 0,18 5,05 1,65
Яблоки 95,36 1,09 0,11 2,21 0,78
Виноград 84,37 0,40 - 12,13 1,98
Изюм 79,12 1,01 - 15,21 -
Мед 24,46 2,52 0,59 69,66 ~
Белые грибы 18,96 1,42 - 79,89 -

Для нормальной жизнедеятельности организм должен получать оптимальное количество полноценных белков, жиров, углеводов, минеральных солей и витаминов, которые содержатся в различных пищевых продуктах. Качество пищевых продуктов определяется их физиологической ценностью. Наиболее ценными пищевыми продуктами являются молоко, масло, творог, яйца, мясо, рыба, зерновые, фрукты, овощи, сахар.

Люди разных профессий затрачивают при своей деятельности разное количество энергии. Например, занимающийся интеллектуальным трудом в день тратит менее 3000 больших калорий. Человек, занимающийся тяжелым физическим трудом, за день затрачивает в 2 раза больше энергии (табл. 2).

Таблица 2.

Энергетический расход (ккал/сут) для лиц различных категорий труда

Многочисленные исследования показали, что мужчине среднего возраста, занимающемуся и умственным, и физическим трудом в течение 8-10 ч, необходимо потреблять в день 118 г белков, 56 г жиров, 500 г углеводов. В пересчете это составляет около 3 000 ккал. Для детей, людей пожилого возраста, для лиц занимающихся тяжелым физическим трудом, требуются индивидуальные, научно обоснованные нормы питания. Пищевой рацион составляется с учетом пола, возраста человека и характера его деятельности. Большое значение имеет режим питания. В зависимости от возраста, рода работы и других критериев устанавливается 3-6-разовое питание в сутки с определенным процентным содержанием пищи на каждый прием.

Таким образом, чтобы сохранять энергетический баланс, поддерживать нормальную массу тела, обеспечивать высокую работоспособность и профилактику различного рода патологических явлений в организме, необходимо при полноценном питании увеличить расход энергии за счет повышения двигательной активности, что существенно стимулирует обменные процессы.

Важнейшая физиологическая «константа» организма - то минимальное количество энергии, которое человек расходует в состоянии полного покоя. Эта константа называется основным обменом. Нервная система, сердце, дыхательная мускулатура, почки, печень и другие органы непрерывно функционируют и потребляют определенное количество энергии. Сумма этих затрат энергии и составляет величину основного обмена.

Основной обмен человека определяют при соблюдении следующих условий: при полном физическом и психическом покое; в положении лежа; в утренние часы; натощак, т.е. через 14ч после последнего приема пищи; при температуре комфорта (20°С). Нарушение любого из этих условий приводит к отклонению обмена веществ в сторону повышения. За 1 ч минимальные энергетические затраты организма взрослого человека составляют в среднем 1 ккал на 1 кг массы тела.

Основной обмен является индивидуальной константой и зависит от пола, возраста, массы и роста человека. У здорового человека он может держаться на постоянном уровне в течение ряда лет. В детском возрасте величина основного обмена значительно выше, чем в пожилом. Деятельное состояние вызывает заметную интенсификацию обмена веществ. Обмен веществ при этих условиях называется рабочим обменом. Если основной обмен взрослого человека равен 1700- 1800 ккал, то рабочий обмен в 2-3 раза выше. Таким образом, основной обмен является исходным фоновым уровнем потребления энергии. Резкое изменение основного обмена может быть важным диагностическим признаком переутомления, перенапряжения и недовосстановления или заболевания.



Для поддержания жизнедеятельности человеку требуется постоянный расход внутренней энергии. Процесс, ответственный за энергетические преобразования в организме человека называется обмен веществ.

Продукты питания снабжают человека химической энергией , которая, переходя в другие формы, согревает организм, поддерживает его жизнедеятельность и выполняет механическую работу (ходьба, поднятие грузов). Таким образом, вся наша энергия поставляется пищей или внутренними резервами (какой-то частью жировых запасов, участвующих в обмене веществ). Если вы поверили в закон сохранения энергии , то должны согласиться, что третьего выхода нет: либо нам надо потреблять достаточное количество пищи (и усваивать ее), либо «сжигать» собственный жир.

Человек не может выполнить ни добавочной работы без дополнительного питания, ни нормальной работы на пониженном рационе, если он не воспользуется собственными внутренними запасами жира, которые, в конечном счете, тоже накопились благодаря питанию. Соединяясь с кислородом, топливо-пища превращается в углекислый газ и воду. При «сжигании» пищи до углекислого газа и воды , в процессе обмена веществ освобождается определенное количество химической энергии независимо от характера промежуточных процессов.

Если бы это было не так, мы могли бы опровергнуть закон сохранения энергии , т. е. создали бы себе пищу с помощью одного процесса и потребляли бы ее в другом, который высвобождал бы больше энергии! Так что энергосодержание пищи можно измерить сжиганием ее образцов в лаборатории. Поэтому мы можем вычислить калорийность не только собственного рациона, но и рациона всего человечества. По выдыханию углекислого газа, мы можем определить количество топлива, сжигаемого при различного рода деятельности: ходьбе, ночном сне, игре в футбол, работе и т.п.

Тем самым мы можем определить «цену» жизни

Подобные испытания проводятся с помощью маски, надеваемой на лицо испытуемого; эта маска собирает выдыхаемый воздух за короткий период времени, газометром измеряется объем выдыхаемого воздуха, и анализ образца дает количество кислорода, которое заменилось на углекислый газ. Эти химические изменения за целый день дают нам полное количество пищи, «сожженное» испытуемым за время рабочего цикла, позволяя оценить расход внутренней энергии человеком.

Минимальный жизненный уровень, при котором поддерживается работа сердца, легких, минимум пищеварения, требует определенного количества энергии. Этот минимум энергии называется основным обменом веществ. В холодную погоду на нагревание тела требуется несколько больше энергии! Ходьба и другая умеренная деятельность предъявляют дополнительные требования, а усиленные упражнения требуют еще больше. При тяжелой физической работе мы должны потреблять гораздо большее количество пищи, чем это необходимо для самой работы, ибо к. п. д. нашего тела составляет только около 25%, а остальные 75% тратятся на теплоту.

Минимальный расход внутренней энергии для организма здорового человека составляет около 2000 Кал в день; плавание или футбол требуют дополнительно 500 Кал в час, а для 8 часов тяжелой физической работы требуется еще 2000 Кал в день. Так что грузчику нужно вдвое больше питания, чем бездельнику, хотя последний имеет то же телосложение; следовательно, и есть грузчик должен вдвое больше. Но, с другой стороны, студенту, усиленно изучающему математику, нужно столько же питания, сколько и тогда, когда он бьет баклуши. Умственный труд требует очень небольших немедленных затрат - ум искусен, но, по-видимому, не жаден. Возможно, он предъявляет свои счета позднее.

Всем нам, если мы не сидим в тюрьме, не лежим в постели, обленившись до крайности, необходимо дополнительное питание сверх минимального уровня. Истощенный человек с недостаточным рационом не может «вершить дела». Либо он должен жить спокойной жизнью и даже лежать в постели, либо он постепенно будет «съедать» самого себя.

Именно пища ставит предел росту численности населения планеты. В мире, как целом, всегда были большие группы людей, находящихся на грани истощения. Каждый раз, когда создавались машины, облегчающие добывание продуктов питания или другую работу, население возрастало до нового уровня, определяемого количеством продуктов питания и топлива. В настоящее время количество продуктов питания и топлива регулирует жизнь и определяет благосостояние планеты, хотя в будущем большую угрозу может представлять нехватка пресной воды. И если когда-нибудь удастся достигнуть обильного снабжения как сельского хозяйства, так и промышленности дешевой термоядерной энергией , то жить станет определенно лучше.

Просто о сложном – Энергия и обмен веществ в организме человека

  • Галерея изображений, картинки, фотографии.
  • Энергия и обмен веществ в организме человека – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Энергия и обмен веществ в организме человека.
  • Ссылки на материалы и источники – Энергия и обмен веществ в организме человека.
    Похожие записи

ОБМЕН ВЕЩЕСТВ

ПОНЯТИЯ

Обмен веществ - это совокупность процессов поступления веществ в организм, использования их организмом в процессах ана­болизма и катаболизма и выделения продуктов распада в окружаю­щую среду. Понятие питание включает совокупность процессов поступления пищевых веществ в желудочно-кишечный тракт, их переваривания и всасывания продуктов гидролиза в кровь.

Ассимиляция - совокупность процессов, обеспечивающих по­ступление веществ в организм и использование их для синтеза кле­точных структур и секретов клеток.

Анаболизм - заключительная часть ассимиляции, совокуп­ность внутриклеточных процессов, обеспечивающих синтез струк­тур и секретов клеток организма. Исходными продуктами анабо­лизма являются: мономеры (аминокислоты, моносахариды, жирные кислоты, моноглицериды, нуклеотиды), а также вода, минеральные соли и витамины; конечными - полимеры: специфические белки, жиры, углеводы, нуклеиновые кислоты организма. Анаболизм обес­печивает восстановление (обновление) распавшихся в процессе ка­таболизма клеточных структур, восстановление энергетического потенциала, рост развивающегося организма.

Диссимиляция (катаболизм) представляет собой совокупность процессов распада клеточных структур и соединений организма с освобождением энергии, необходимой для деятельности всех орга­нов и систем организма, синтеза структур и секретов клеток, под­держания на оптимальном уровне температуры тела. Исходными продуктами диссимиляции (катаболизма) являются белки, жиры и углеводы клеток организма; конечными - углекислый газ, вода и аммиак, который затем преобразуется в мочевину и другие азотсо­держащие вещества.

У здорового взрослого человека наблюдается равновесие меж­ду ассимиляцией и диссимиляцией. В период роста, при беремен­ности, при интенсивной физической нагрузке, в период выздоров­ления или выхода из состояния голодания ассимиляция преобладает над диссимиляцией. В старости, при истощающих за­болеваниях, при голодании диссимиляция больше ассимиляции.

Источником пластического и энергетического материала яв­ляется пища - в ней содержатся питательные вещества, которы­ми являются продукты гидролиза белков, жиров и углеводов, а также вода, минеральные соли и витамины. Продукты гидролиза являются пластическим и энергетическим материалом, а витами­ны, соли и вода - только пластическим (структурными элемента­ми, обеспечивающими синтез клеточных структур и соединений организма).

Конечными продуктами гидролиза белков в пищеварительном тракте являются аминокислоты, нуклеотиды, углеводов - моноса­хариды, жиров - жирные кислоты, глицерол. При гидролизе обра­зуются мономеры, практически не потерявшие своей энергетиче­ской ценности (освобождается лишь около 1 % заключенной в пище энергии), а при диссимиляции вещества расщепляются до конеч­ных продуктов с выделением большого количества энергии.


Долю питательных веществ, поступивших из пищеварительно­го тракта во внутреннюю среду организма (около 90%), называют усвояемостью питательных веществ.

А. Обмен белков.

Роль белков в организме весьма разнообразна.

1. Пластическая функция белков - они необходимы для синте­за клеточных структур (рост организма, восстановление повреж­денных структурных элементов), для синтеза биологически актив­ных веществ - гормонов, ферментов. Белок - это первооснова жизни, 50% сухого вещества клетки составляют белки. Азот со­держится только в белках, их нельзя заменить углеводами или жи­рами.

2. Энергетическая роль белков второстепенная - белки при сба­лансированном питании поставляют около 15% энергии организму.

3. Транспорт гормонов, липидов, холестерина, минеральных веществ.

4. Защитная функция белков (иммунные белки плазмы крови, антитела).

5. Создают онкотическое давление (см. раздел 6.1).

6. Являются компонентами буферных систем крови (см. раз­дел 6.1).

Биологическая ценность различных белков определяется на­бором аминокислот, содержащихся в их составе. Белки, не содер­жащие хотя бы одной незаменимой аминокислоты, называют не­полноценными, так как это ведет к нарушению синтеза белков. Животные белки считаются полноценными для организма, так как они по аминокислотному составу ближе к белкам человека и со­держат полный набор незаменимых аминокислот. Растительные белки являются неполноценными, так как они не содержат полно­го набора аминокислот. Незаменимые аминокислоты те, которые не синтезируются в организме. К ним относятся следующие амин-кислоты: аргинин, валин, гистидин, изолейцин, лейцин, метеонин, треонин, триптофан, фенилаланин.

Потребность организма в белках. При оценке расхода белка организмом и потребности в белках различают следующие вариан­ты. Коэффициент изнашивания - количество белка, распадаю­щегося в организме за сутки при безбелковой диете, но достаточ­ной по калорийности за счет жиров и углеводов (белковое голодание). Он равен около 20 г белка в сутки. Белковый мини-

мум - минимальное количество белка пищи, при котором возмож­но поддержание азотистого равновесия. Он равен в условиях по­коя около 40 г белка в сутки. Белковый оптимум - это количест­во белка пищи, которое полностью обеспечивает потребности организма, хорошее самочувствие, высокую работоспособ­ность, достаточную сопротивляемость неблагоприятным воздейст­виям на организм. Он равен около 90 г в сутки, но не менее 1 г/кг массы в сутки. При недостаточном поступлении белков в ор­ганизм развиваются снижение умственной и физической работо­способности, недостаточность защитных функций организма, могут развиваться отеки и атрофия мышц. В пищевом рационе должно быть 55-60% животных белков от общего количества белков.

Приход белка в организм определяют следующим образом. В навеске пищевого продукта биохимическим методом определя­ют содержание азота в граммах, умножают результат на 6,25, так как белок на 16% состоит из азота, затем пересчитывают на общий вес продукта и вычитают 10%, т. е. количество белка, не усвоен­ного в пищеварительном тракте. Для определения суточного рас­хода белка организмом определяют в суточной моче содержание азота в граммах и также умножают результат на 6, 25.

В процессе обмена белков могут наблюдаться азотистое равно­весие, положительный или отрицательный азотистый баланс. Азо-" тистым равновесием называют состояние азотистого обмена, при котором количество поступившего в организм азота равно количест­ву азота, выводимого с мочой. При увеличении содержания белка в пище азотистое равновесие вскоре установится на новом, но более высоком уровне. Положительным азотистым балансом называ­ют состояние азотистого обмена, при котором количество поступив­шего в организм азота больше выводимого с мочой. Он наблюдается в период роста организма, после голодания, при беременности, при физической тренировке, сопровождающейся ростом мышечной мас­сы, при выздоровлении после истощающей болезни. Под отрица­тельным азотистым балансом понимают состояние азотистого баланса, при котором количество поступившего в организм азота меньше выводимого с мочой. Он наблюдается при голодании, при не­достатке количества или биологической ценности белка пищи, при истощающих заболеваниях, в старости.

Регуляция обмена белка. Гормон щитовидной железы тирок­син (Т 3) усиливает синтез белков; высокие концентрации Т 3 , наоборот, подавляют синтез белка; гормон роста, инсулин, тестос­терон, эстроген стимулируют синтез белка в организме. Глюкокор-тикоиды усиливают распад белков, особенно в мышечной и лимфо-идной тканях, но стимулируют синтез белков в печени.


Б. Обмен жиров.

Функции жиров. Жиры в организме выполняют энергетиче­скую, пластическую, защитную функции, роль депо. Пластическая роль жиров заключается в том, что из жиров образуются элементы клеточных структур, ряд биологически активных веществ, напри­мер, гормоны, простагландины, витамины А и Д. Защитная функ­ция жиров: предохраняют кожу от высыхания и от действия во­ды, защищают организм от механических воздействий, от переохлаждения. Роль депо жиров заключается в том, что они со­ставляют резерв энергии и воды. При окислении 100 г жира обра­зуется 110 г воды и освобождается 930 ккал энергии. Жиры синте­зируются из жирных кислот и глицерина, из аминокислот и моносахаридов.

Биологическая ценность жиров, поступающих в организм, за­висит от наличия в них заменимых и особенно незаменимых жир­ных кислот, от соотношения жиров животного и растительного происхождения, содержания витаминов А, Д, Е. Линолевая и линоленовая кислоты являются незаменимыми, так как они не синтезируются в организме человека из других органических соединений. Они составляют около 1% от общего количества жиров. Заменимые жирные кислоты (насыщенные) - олеиновая, пальметиновая, стеариновая и другие - синтезируются в организ­ме. Оптимальный вариант соотношения в пищевом рационе жиров животного и растительного происхождения следующее - 70% жи­вотных жиров, 30% - растительных. При этом около 30% энерго­трат организма должно покрываться за счет жиров.

Потребность организма в жирах составляет около 110 г в сутки. При недостатке жира в организме развиваются примерно те же нарушения, что и при недостаточном поступлении незаменимых жирных кислот: наблюдаются поражения кожи и волос, наруше­ние синтеза простагландинов, страдают все функции организма. При недостаточном поступлении в организм только незаменимых жирных кислот развиваются такие же нарушения, а также гипер-холестеринемия, что способствует развитию атеросклероза.

При избыточном поступлении жиров в организм развиваются ожирение, атеросклероз (преждевременно). Ожирение является фактором риска развития сердечно-сосудистых заболеваний и их осложнений (инфаркт миокарда, инсульт и др.), ведет к снижению продолжительности жизни.

Регуляция обмена жиров. Адреналин, норадреналин, тирок­син, гормон роста, глюкагон, глюкокортикоиды мобилизуют жиры из жировых депо в организме. Поэтому при физических нагрузках и стрессовых состояниях в результате выброса в кровь адаптивных

гормонов (катехоламинов, глюкокортикоидов) расход жиров орга­низмом возрастает.

В. Обмен углеводов.

Роль углеводов в организме. Они выполняют преимуществен­но энергетическую, а также пластическую функцию. Клетчатка улучшает двигательную и секреторную функции желудочно-кишеч­ного тракта, способствует выведению из организма холестерина пи­щи. Пластическая роль углеводов заключается в том, что они вхо­дят в состав нуклеиновых кислот (ДНК, РНК), ряда коферментов (НАД, НАДФ, флавопротеинов), некоторых гормонов, ферментов, витаминов; являются структурным элементом клеточных мембран, разных структур соединительной ткани; из углеводов синтезиру­ются заменимые амино- и жирные кислоты.

Потребность организма в углеводах составляет около 400 г в сутки и зависит от интенсивности физического труда - с увели­чением физической нагрузки потребность организма в углеводах, как в белках и жирах, возрастает. При недостатке и резком сни­жении глюкозы в крови возникает чувство голода, снижается ум­ственная и физическая работоспособность. При выраженном уменьшении глюкозы в крови (до 50% от нормы) появляются по­теря сознания и судороги (гипогликемическая кома). При избы­точном поступлении углеводов в организм развивается ожире-" ние, что способствует развитию атеросклероза (фактор риска развития сердечно-сосудистых заболеваний и их осложнений); из­быточное потребление глюкозы может способствовать разви­тию аллергических состояний.

Регуляция обмена углеводов. Инсулин способствует утили­зации глюкозы в клетках с помощью повышения проницаемости мембраны клеток для глюкозы, стимулирует синтез гликогена в печени и мышцах, синтез жиров из углеводов, что ведет к умень­шению содержания глюкозы в крови. Адреналин, норадреналин, глюкагон, глюкокортикоиды, тироксин, гормон роста увеличивают содержание глюкозы в крови. Симпатическая нервная система стимулирует процессы катаболизма, парасимпатическая - анабо­лизма.

Пищевой рацион должен обеспечивать пластические и энерге­тические потребности организма с учетом возраста, пола, антропо­метрических данных (рост, масса), трудовой деятельности, клима­тических условий. Белки, жиры и углеводы в пищевом рационе взрослого человека должны содержаться в соотношении 1 :1 , 2:4, 6. Пищевой рацион при четырехразовом питании наиболее целесо­образно распределить следующим образом: завтрак - 25%, второй завтрак - 15%, обед - 45%, ужин - 15%.


Г. Обмен воды и минеральных веществ.

Функции (значение) воды в организме. Вода определяет струк­туру многих макромолекул, участвует в обеспечении химических реакций и выделении продуктов обмена, в процессах терморегуля­ции, определяет реологические свойства крови.

Имеется три основных состояния внутриклеточной и внекле­точной воды: конституционная вода, являющаяся структурным элементом молекул клеток и тканей организма; связанная вода, об­разующая гидратные оболочки макромолекул (коллоиды); свобод­ная, т. е. ничем не связанная (растворитель).

На биологическую ценность воды могут влиять дополнитель­ные компоненты: содержание микроэлементов, минеральных со­лей, тяжелого водорода и кристаллической воды.

Потребность организма в воде вариабельна, в средних ши­ротах она составляет 2,5-3,0 л. При избыточном поступлении во­ды в организм наблюдается увеличение объема циркулирующей кро­ви, что увеличивает нагрузку на сердце, усиление потоотделения и мочеотделения, потерю солей, витаминов, ослабление организма.

Основными "микроэлементами, необходимыми человеку, яв­ляются медь, цинк, фтор, йод, кобальт, бор, железо. Обычно они поступают в организм в достаточном количестве при сбалансиро­ванном питании.

Д. Роль витаминов в обмене веществ заключается в том, что они являются компонентом ферментов, участвуют в различных хи­мических реакциях, лежащих в основе обмена веществ. Они содер­жатся во всех пищевых продуктах, их больше в овощах, ягодах и фруктах. При недостатке витаминов в пищевом рационе развива­ются нарушения в организме.

Источником энергии в организме служат продукты гидролиза углеводов, жиров и белков, поступающие в организм. Освобожде­ние же энергии в организме происходит в процессе диссимиляции (катаболизма), т. е. распада клеточных структур и соединений ор­ганизма, которые синтезируются из питательных веществ, посту­пающих в кровь в результате пищеварения (гидролиза) пищевых продуктов и всасывания продуктов гидролиза в кровь. Различают основной и рабочий обмен.

А. Основным обменом называют минимальный расход энер­гии, обеспечивающий гомеостазис в стандартных условиях: при бодр­ствовании, максимальном мышечном и эмоциональном покое, нато-

Щак (12 -16 ч без еды), при температуре комфорта (18° - 20°С). Основной обмен определяют в указанных стандартных условиях по­тому, что физическая нагрузка, эмоциональное напряжение, прием пищи и изменение температуры окружающей среды увеличивают интенсивность метаболических процессов в организме (расход энер­гии). Энергия основного обмена в организме расходуется на обеспе­чение жизнедеятельности всех органов и тканей организма, клеточ­ный синтез, на поддержание температуры тела.

На величину должного (среднестатистического) основно­го обмена здорового человека влияют следующие факторы: пол, воз-. раст, рост и масса тела (вес). На величину истинного (реального) основного обмена здорового человека влияют также условия жизне­деятельности, к которым организм адаптирован: постоянное про­живание в холодной климатической зоне увеличивает основной обмен; длительное вегетарианское питание уменьшает. Величину должного основного обмена у человека определяют по табли­цам, формулам, номограммам.

Для определения величины истинного основного обмена у человека используют метод Крога (неполный газовый анализ, см. раздел 12.3).

Величина основного обмена в сутки у мужчин составляет 1500 -ъ 1700ккал (6300- 7140 кДж); в расчете на 1 кг массы в сутки равна 21-24 ккал (88 - 101 кДж). У женщин эти показатели примерно на 10% меньше.

Показатели основного обмена при расчете на 1м 2 поверхности тела у теплокровных животных разных видов и человека примерно равны, при расчете на 1 кг массы сильно отличаются: чем мельче организм, тем больше расход энергии.

Б. Рабочим обменом называют совокупность основного обме­на и дополнительного расхода энергии, обеспечивающего жизне­деятельность организма в различных условиях. Факторами, повы­шающими расход энергии организмом, являются: физическая и умственная нагрузка, эмоциональное напряжение, изменение тем­пературы и других условий окружающей среды, специфическиди-намическое действие пищи (увеличение расхода энергии после приема пищи). При этом изменение температуры в интервале 15 -30°С существенно не сказывается на энергозатратах организма. При температуре ниже 15°С, а также выше 30°С расход энергии увели­чивается. Повышение обмена веществ при температуре окружаю­щей среды ниже 15° предотвращает охлаждение организма.

Расход энергии организмом после приема белковой и смешан­ной пищи увеличивается на 20 - 30%, после приема жиров и угле­водов увеличивается на 10 - 12%.


Часть тепловой энергии, вырабатываемой организмом в процес­се его жизнедеятельности, обеспечивает механическую работу. Для определения эффективности этого преобразования вводится поня­тие коэффициент полезного действия организма при мышечной работе - это выраженное в процентах отношение энергии, эквива­лентной полезной механической работе, ко всей энергии, затрачен­ной на выполнение этой работы. Коэффициент полезного действия (КПД) у человека при мышечной работе рассчитывают по фор-

муле: КПД = ---100%, где А - энергия, эквивалентная полезной

работе, С - общий расход энергии, е - расход энергии за такой же промежуток времени в состоянии покоя. КПД равен 20%.


В. Потребность организма в энергии (ккал в сутки) опреде­ляется видом трудовой деятельности (табл. 10.1).


Напомним, что питание должно быть сбалансированным - со­отношение белков, жиров и углеводов 1:1, 2:4, 6, содержать доста­точное количество воды, минеральных солей и витаминов.

Г. Исследование прихода энергии в организм. Основными методами определения количества энергии в навеске продукта яв­ляются: физическая калориметрия; физико-химические методики определения количества белков, жиров и углеводов в навеске с по­следующим расчетом содержащихся в них энергий по таблицам.

Сущность способа физической калориметрии заключается в следующем: в калориметре сжигают навеску продукта, а затем по степени нагревания воды и материала калориметра рассчитывают выделившуюся энергию. Количество тепла, выделившегося при сго­рании продукта в калориметре, рассчитывают по формуле:

где О. - количество тепла, М - масса (в - воды, к - калориметра), (1 2 _ ^) ~ разность температур воды и калориметра после и до сжи­гания навески, С - удельная теплоемкость, 0 - количество теп­ла, образуемое окислителем.

Количество тепла, освобождаемое при сгорании 1 г вещества в калориметре, называют физическим калорическим коэффици­ентом, при окислении 1 г вещества в организме - физиологиче­ским калорическим коэффициентом. Основанием для расчета прихода энергии в организм по количеству усвоенных белков, жи­ров и углеводов является закон термодинамики Гесса, который гла­сит: термодинамический эффект зависит только от теплосодержа­ния начальных и конечных продуктов реакции и не зависит от промежуточных превращений этих веществ. При окислении в ор­ганизме 1 г белков освобождается 4, 1 ккал(17, 2кДж), 1 г жиров -9, 3 ккал (38, 9 кДж), 1 г углеводов - 4, 1 ккал (17, 2 кДж). При сгорании в калориметре жиров и углеводов выделяется столько же тепла, сколько в организме. При сгорании белка в калориметре энер­гии выделяется несколько больше, чем в организме, так как часть энергии белка при окислении в организме теряется с мочевиной и другими веществами белкового обмена, которые содержат энергию и выводятся с мочой.

Чтобы рассчитать приход энергии в организм с пищей, химическим путем определяют содержание белков, жиров и углеводов в продуктах питания, умножают их количество на соот­ветствующие физиологические калорические коэффициенты, сум­мируют и из суммы вычитают 10% - что не усваивается в пищева­рительном тракте(потери с калом).


Д. Расход энергии организмом определяют с помощью пря­мой и непрямой калориметрии. Основными из этих методов явля­ются следующие: прямая калориметрия - метод Этуотера - Бене­дикта; непрямая, или косвенная, калориметрия - методы Крога, Шатерникова, Дугласа - Холдена.

Принцип прямой калориметрии основан на непосредственном измерении количества тепла, выделенного организмом.

Принцип работы и устройство камеры Этуотера - Бене­дикта. Камера, в которую помещают испытуемого, термически изо­лирована от окружающей среды, ее стенки не поглощают теп­ло, внутри них находятся радиаторы, через которые течет вода. По степени нагрева определенной массы воды рассчитывают количе­ство тепла, израсходованного организмом.

Принцип непрямой (косвенной) калориметрии основан на расчете количества выделившейся энергии по данным газообмена (поглощенный 0 2 и выделившийся С0 2 за,сутки). Количество вы­деляемой организмом энергии можно рассчитать по показателям газообмена потому, что количество потребленного организмом 0 2 и выделенного С0 2 точно соответствует количеству окисленных белков, жиров и углеводов, а значит, и израсходованной организ­мом энергии. Для расчета расхода энергии методом непрямой ка­лориметрии используются дыхательный коэффициент и калориче­ский эквивалент кислорода.

Дыхательным коэффициентом называют отношение объема выделенного организмом углекислого газа к объему потребленно­го за это же время кислорода. Величина дыхательного коэффици­ента зависит от соотношения белков, жиров и углеводов, окисляю­щихся в организме. Дыхательный коэффициент при окислении в организме белков равен 0,8, жиров - 0,7, углеводов -1,0. Дыха­тельный коэффициент для жиров и белков ниже, чем для углево­дов, вследствие того, что на окисление белков и жиров расходует­ся больше 0 2 , так как они содержат меньше внутримолекулярного кислорода, чем углеводы. Дыхательный коэффициент у человека в начале интенсивной физической работы приближается к единице, потому что источником энергии в этом случае являются преиму­щественно углеводы.

В первые минуты после интенсивной и длительной физической работы дыхательный коэффициент у человека больше единицы, так как С0 2 выделяется больше, чем потребляется 0 2 , поскольку мо­лочная кислота, накопившаяся в мышцах, поступает в кровь и вы­тесняет С0 2 из бикарбонатов.

Калорическим эквивалентом кислорода называют количест­во тепла, освобождаемого организмом при потреблении 1л 0 2 . Ве-


личина калорического эквивалента кислорода зависит от соотно­шения белков, жиров и углеводов, окисляющихся в организме. Ка­лорический эквивалент кислорода при окислении в организме (в процессе диссимиляции) белков, жиров и углеводов равен: для белков - 4, 48 ккал (18,8 кДж), для жиров - 4,69 ккал (19,6 кДж), для углеводов - 5,05 ккал (21,1 кДж).

Определение расхода энергии по способу Дугласа - Холдена (полный газовый анализ) осуществляют следующим образом. В те­чение нескольких минут испытуемый вдыхает атмосферный воз­дух, а выдыхаемый воздух собирают в специальный мешок, изме­ряют его количество и проводят анализ газов с целью определения объема потребленного кислорода и выделившегося С0 2 . Рассчиты­вают дыхательный коэффициент, с помощью которого по таблице находят соответствующий калорический эквивалент 0 2 , который затем умножают на объем 0 2 , потребленного за данный промежу­ток времени.

Метод М. Н. Шатерникова для определения расхода энер­гии у животных в эксперименте заключается в следующем. Живот­ное помещают в камеру, в которую поступает кислород по мере его расходования. Выделяющийся при дыхании С0 2 поглощается ще­лочью. Расчет выделенной энергии осуществляется по количеству


потребленного 0 2 и усредненному калорическому эквиваленту 0 2: 4,9 ккал (20,6 кДж).

Определение расхода энергии по способу Крога (неполный газовый анализ). Испытуемый вдыхает кислород из мешка метабо-лиметра, выдыхаемый воздух возвращается в тот же мешок, пред­варительно пройдя через поглотитель С0 2 . По показаниям метабо-лиметра определяют расход 0 2 и умножают на калорический эквивалент кислорода в условиях основного обмена: 4,86 ккал (20,36 кДж). Таким образом, метод Дугласа - Холдена предполага­ет расчет расхода энергии по данным полного газового анализа; ме­тод Крога - только по объему потребленного кислорода с исполь­зованием калорического эквивалента кислорода, характерного для условий основного обмена (рис. 10.1).

Изменение интенсивности выработки энергии в организме иг­рает главную роль в процессах терморегуляции.

Глава 11 ВЫДЕЛИТЕЛЬНАЯ СИСТЕМА