Полная энергия и работа системы частиц. Кинетическая энергия системы частиц. Кинематика поступательного движения

Мы показали, что работа по перемещению частицы из положения 1 в положение 2 может быть выражена через приращение кинетической энергии:

В общем случае на частицу могут действовать как потенциальные, так и непотенциальные силы. Таким образом, результирующая сила, действующая на частицу:

.

Работа всех этих сил идет на приращение кинетической энергии частиц:

.

Но, с другой стороны, работа потенциальных сил равна убыли потенциальной энергии частиц:

следовательно,

Величину называют полной механической энергией частицы . Обозначим ее через Е .

Таким образом, работа непотенциальных сил идет на приращение полной механической энергии частицы.

Приращение полной механической энергии частицы в стационарном поле потенциальных сил при перемещении ее из точки 1 в точку 2 можно записать в виде:

.

Если > 0, то полная механическая энергия частицы возрастает, а если < 0, то убывает. Следовательно, полная механическая энергия частицы может измениться под действием только непотенциальных сил. Отсюда непосредственно вытекает закон сохранения механической энергии одной частицы. Если непотенциальные силы отсутствуют, то полная механическая энергия частицы в стационарном поле потенциальных сил остается постоянной.

В реальных процессах, где действуют силы сопротивления, наблюдается отклонение от закона сохранения механической энергии. Например, при падении тела на Землю сначала кинетическая энергия тела возрастает, поскольку увеличивается скорость. Возрастает и сила сопротивления, которая увеличивается с возрастанием скорости. Со временем она будет компенсировать силу тяжести, и в дальнейшем при уменьшении потенциальной энергии относительно Земли кинетическая энергия не возрастает. Работа сил сопротивления приводит к изменению температуры тела. Нагревание тел при действии трения легко обнаружить, потерев ладони друг о друга.

Работа силы по перемещению частицы идет на увеличение энергии частицы:

dA =( , ) = ( , d ) = (d , )=dE

217. Что такое энергия связи? Поясните на примере ядра атома.

Энергия связи – разность между энергией состояния, в котором составляющие части системы бесконечно удалены друг от друга и находятся в непрерывном состоянии активного покоя и полной энергией связанного состоянии системы

где – полная энергия i-го компонента в несвязной системе, а Е – полная энергия связанной системы

ПРИМЕР:

Ядра атомов – сильно связанные системы из большого числа нуклонов. Для полного расщепления ядра на составные части и удаление их на большие расстояния друг от друга необходимо затратить определенную работу А. Энергией связи называют энергию, равную работе, которую надо совершить, чтоб расщепить ядро на свободные нуклоны

Eсвязи = -А

По закону сохранения энергия связи одновременно равна энергии, которая выделится при образовании ядра из отдельных нуклонов

Что такое макроскопическое тело, термодинамическая система?

Макроскопическое тело – большое тело, состоящее из множества молекул.

Термодинамическая система – совокупность макроскопических тел, которые могут взаимодействовать между собой и другими телами (внешней средой) – обмениваться с ними энергией и веществом.

Почему к системам, состоящим из большого числа частиц неприменим динамический метод описания?

Применить динамический метод (записать уравнения движения и начальные условия для всех атомов и молекул и вычистить положение всех частиц в каждый момент времени) невозможно, т.к. для изучения системы, состоящей из большого числа атомов и молекул, информация должна иметь обобщенный характер и относиться не к отдельным частицам, а ко всей совокупности.

Что такое термодинамический метод исследования термодинамической системы?

Метод исследования систем из большого числа частиц, оперирующий величинами, характеризующими систему в целом (p, V, T) при различных превращениях энергии, происходящих в системе, не учитывая внутреннего строения изучаемых тел и характера отдельных частиц.

Что такое статистический метод исследования термодинамической системы?

Метод исследования систем из большого числа частиц, оперирующий закономерностями и средними значениями физических величин, характеризующих всю систему

Какие основные постулаты термодинамики Вы знаете?

0: Существование и транзитивность теплового равновесия:



А и С в равновесии др с др, В – термометр

Состояние равновесия термометра детектируется по термометрическим параметрам.

1: Теплота, полученная термодинамической системой равна сумме работы системы над окр. средой и изменению внутренней энергии.

Q = A +

2: Современная формулировка: в замкнутой системе изменение энтропии не убывает (S ≥ 0)

Приращение кинетической энергии каждой частицы равно работе всех сил, действующих на частицу: ΔK i = A i . Поэтому работу A, которую совершают все силы, дей­ствующие на все частицы системы, при изменении ее состоя­ния, можно записать так: К, или

(1.6.9)

где K - суммарная кинетическая энергия системы.

Итак, приращение кинетической энергии системы равно ра­боте, которую совершают все силы, действующие на все час­тицы системы:

Заметим, что кинетическая энергия системы - величина ад­дитивная: она равна сумме кинетических энергий отдельных частей системы независимо от того, взаимодействуют они меж­ду собой или нет.

Уравнение (1.6.10) справедливо как в инерциальных, так и в неинерциальных системах отсчета. Следует только помнить, что в неинерциальных системах отсчета кроме работ сил взаи­модействия необходимо учитывать и работу сил инерции.

Теперь установим связь между кинетическими энергиями системы частиц в разных системах отсчета. Пусть в неподвижной системе отсчета кинетическая энергия инте­ресующей нас системы частиц равна К. Скорость i-ой частицы в этой системе можно представить как, , где - скорость этой ча­стицы в движущейся системе отсчета, a -скорость движущейся системы относительно неподвижной системы отсчета. Тогда кинетическая энергия системы

где - энергия в движущейся системе, т – масса всей системы частиц, - ее импульс в движущейся системе отсчета.

Если движущаяся система отсчета связана с центром масс (Ц-система), то центр масс покоится, а значит последнее слагаемое равно нулю и предыдущее выражение примет вид

где - суммарная кинетическая энергия частиц в Ц-системе, называемая собственной кинетической энергией системы частиц

Таким образом, кинетическая энергия системы частиц складывается из собственной кинетической энергии и кинетической энергии, связанной с движением систе­мы частиц как целого. Это важный вывод, и он неоднократно будет использоваться в дальнейшем (в частности, при изучении динамики твердого тела).

Из формулы (1.6.11) следует, что кинетическая энергия сис­темы, частиц минимальна в Ц-системе. В этом еще одна осо­бенность Ц-системы.

Работа консервативных сил.

Воспользовавшись формулой (1.6.2) и

графическим способом определения работы,

рассчитаем работу некоторых сил.

1.Работа, совершаемая силой тяжести

Сила тяжести направлена

вертикально вниз. Выберем ось z ,

направленную вертикально вверх и

спроецируем на нее силу .

Построим график

зависимости от z (рис.1.6.3). Работа силы тяжести

при перемещении частицы из точки с координатой в точку с координатой равна площади прямоугольника



Как видно из полученного выражения работа силы тяжести равна изменению некоторой величины, не зависящей от траектории частицы и определенной с точностью до произвольной постоянной

2.Работа силы упругости.

Проекция силы упругости на ось х, указывающую направление деформации,