Сохраняется ли полная механическая энергия. Закон сохранения энергии в механике

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах . Он является следствием законов Ньютона. Сумму E = E k + E p называют полной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Билет 11

Выражение кинетического момента тела с одной неподвижной точкой через матрицу моментов инерции тела.

Имеет твердое тело, одна из точек которого закреплена. Движение тела рассматривается относительно некоторой системы координат О xyz .

Кинетически момент относительно неподвижной точки:

Где r k - радиус-вектор какой-либо точки тела. m k -масса точки. V k - скорость этой точки относительно выбранной системы отсчета.

формула эйлера

В проекциях на оси:

Для проекции кинетического момента на ось O x с учетом(2’) имеем:

Суммы в (1’) представляют собой соответственно осевой и центробежные моменты инерции. Получаем:

По (3)вычисляются проекции на оси координат кинетического момента тела относительно его закрепленной точки. Кинетический момент по проекциям определяется по формуле:

Для неподвижных осей осевые и центробежные моменты инерции изменяются при вращении тела и, следовательно, зависят от времени вследствие изменения положения тела относительно этих осей.

Если применить тензор инерции:

И учесть правило умножения тензора на вектор столбец омега, то можно кратко выразить формулой: .

Упрощаем формулу (3)для проекций:

В этом случае проекции кинетического момента вычисляются так же, как и в случае, если бы каждая из главных осей инерции была неподвижной осью вращения тела. Главные оси инерции для неподвижной точки О обычно подвижные оси, скрепленные с самим вращающимся телом. Только такие оси могут быть главными в течении всего времени вращения тела. Другие подвижные или неподвижные оси могут быть главными только в отдельные моменты времени.

Кинетическая энергия поступательного движения

Кинетической энергией системы называется скалярная величина Т, равная арифметиче­ской сумме кинетических энергий всех точек системы

Кинетическая энергия является характеристикой и поступатель­ного и вращательного движения системы, поэтому теоремой об изме­нении кинетической энергии особенно часто пользуются при решении задач.

Если система состоит из нескольких тел, то ее кинетическая энергия равна, очевидно, сумме кинетических энергий этих тел:

Кинетическая энергия – скалярная и всегда положительная величина.

Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

1. Поступательное движение . В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости дви­жения центра масс. То есть, для любой точки

Таким образом, кинетическая энергия тела при поступатель­ном движении равна половине произведения массы тела на квад­рат скорости центра масс. От направления движения значение Т не зависит.

Билет 12

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси

Дифференциальное уравнение имеет вид:

, (2.6)

где – угловое ускорение тела.

Уравнение (2.6) получается из уравнения (2.4) теоремы путём подстановки в него формулы (2.3).

(2.3)

(2.4)

Интегрируя уравнение (2.6), можно определить закон вращения тела. Методика решения подобных задач:

– изображаем тело в произвольном положении; показываем внешние силы, действующие на тело; показываем ось , направленную по оси вращения тела в ту сторону, откуда вращение видно происходящим против часовой стрелки;

– находим сумму моментов внешних сил относительно оси ;

– вычисляем, если не задан, момент инерции тела ;

– составляем уравнение (2.6), интегрируя это уравнение, определяем закон вращения тела.

ПОТЕНЦИАЛЬНЫЕ СИЛЫ

Поле сил, остающееся постоянным во времени, называется стационарным. В стационарном силовом поле сила, действующая на частицу, зависит только от ее положения. Работа, которую совершают силы поля при перемещении частицы из точки 1 в точку 2, зависит, вообще говоря, от траектории, по которой перемещается частица из начального положения в конечное. Вместе с тем, имеются стационарные силовые поля, в которых работа, совершаемая над частицами силами поля, не зависит от формы траектории между точками 1 и 2. Силы, обладающие таким свойством, называются потенциальными или консервативными, а соответствующее поле сил – потенциальным полем. Примером потенциальных сил являются упругие силы, сила тяжести.

билет 13 1.Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П. Рассмотрим сечение тела какой-нибудь плоскостью OXY, параллельной неподвижной плоскости П (рис.1).При плоскопараллельном движении все точки тела, лежащие на прямой , перпендикулярной к сечению, т.е. к плоскости П, движутся тождественно. Поэтому для изучения движения всего тела достаточно изучить, как движется сечение тела в плоскости OXY. В дальнейшем будем плоскость OXY совмещать с плоскостью рисунка, а вместо всего тела изображать только его сечение. Положение сечения в плоскости OXY определяется положением какого-нибудь проведенного в этом сечении отрезка АВ (рис.2). Положение отрезка АВ можно определить, зная координаты точки А и угол , который от-резок АВ образует с осью x. Точку А, выбранную для определения положения сечения, называют полюсом. При движении тела величины и будут меняться: (1.74) Уравнения определяющие закон происходящего движения, называются уравнениями плоскопараллельного движения твердого тела. 2.Главный момент всех внутренних сил системы(относительно всякого выбранного центра) в любой момент времени равен нулю (M O i =0).M-вектор. или . Уравновешенными внутренние силы будут тогда, когда рассматриваемая система представляет собою абсолютно твердое тело. Действительно, если взять произвольный центр О , то из рис. видно, что . билет 14 1.Кинетической энергией системы называют сумму кинетических энергий всех материальных точек, входящих в систему; при поступательном движении: E=mV 2 /2; при вращении вокруг неподвижной оси : E=I Z v 2 /2; при плоскопараллельном движении : E=mV C 2 /2-I Z v 2 /2, где V C -скорость центра масс,v-угловая скорость. Кинетическая энергия механической системы есть энергия движения центра масс плюс энергия движения относительно центра масс: E=E 0 +E R , где E-полная кинетическая энергия системы, E 0- кинетическая энергия движения центра масс, E R -относительная кинетическая энергия системы. Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы в её сферическом движении относительно центра масс. 2.Степени свободы - это совокупность независимых координат перемещения и/или вращения, полностью определяющая положение системы или тела (а вместе с их производными по времени - соответствующими скоростями - полностью определяющая состояние механической системы или тела - то есть их положение и движение). Обобщенными координатами (о.к.) системы называют такие величины, которые обобщают несколько независимых декартовых координат в углы, линейные расстояния, площади. Удобство состоит в том, что о.к. можно выбирать с учетом наложенных связей, т.е. сообразуясь с характером движения, допускаемого для системы всей совокупностью наложенных связей.

Билет

1) Для внутренних сил механической системы имеет место свойство: главный вектор и главный момент внутренних сил механической системы равны нулю.

.

Это следует из того, что внутренние силы есть силы взаимодействия между точками системы, которые попарно равны и направлены в противоположные стороны.

2) Если все силы системы потенциальны, то обобщенные силы системы выражаются через потенциальную энергию системы как Q j = -дП / дq j , а уравнения Лагранжа второго рода запишутся в виде

Так как потенциальная энергия не зависит от обобщенных скоростей, то. Введем в рассмотрение функцию

Билет 16.

1. Tеорема об изменении кинетической энергии механической системы в дифференциальной форме

Изменение кинетической энергии механической системы на некотором ее перемещении равно сумме работ внешних и внутренних сил, приложенных к точкам системы, на том же перемещении.

2. Удерживающие и стационарные связи

Если функция зависит явно от времени, то говорят, что связь - нестационарная или реономная ; если же эта функция не зависит явно от времени, то говорят, что эта связь -стационарная или склерономная .

Если связь задаётся равенством, то говорят, что такая связь - удерживающая или двусторонняя :

Билет 17

1 Tеорема об изменении кинетической энергии механической системы

Кинетической энергией системы называют сумму кинетических энергий всех тел, входящих в систему. Для определённой таким образом величины справедливо утверждение:

Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.

2 Голономные связи

Голоно́мная связь - механическая связь, налагающая ограничения только на положения (или перемещения) точек и тел системы.

Математически выражается в виде равенства:

Билет 18

1.Принцип Эйлера-Даламбера для материальной точки

Согласно данному принципу, для каждой i-той точки системы верно равенство , где - действующая на эту точку активная сила, - реакция наложенной на точку связи, - сила инерции, численно равная произведению массы точки на её ускорение и направленная противоположно этому ускорению ()

2 кинетическая энергия тела при плоском движении

Билет 19

Уравнения кинетостатики.

Кинетостатика - раздел механики, в котором рассматриваются способы решения динамических задач с помощью аналитических или графических методов статики. В основе К. лежит Д"Аламбера принцип, согласно которому уравнения движения тел можно составлять в форме уравнений статики, если к фактически действующим на тело силам и реакциям связей присоединить силы инерции. Методы К. находят применение при решении ряда динамических задач, особенно в динамике машин и механизмов.

уравнения кинетостатики для материальной точки :

где F, R, Ф - главные векторы активных сил, реакций связей и сил инерции;

Fz, Rz, Ф z - главные моменты активных сил, реакций связей и сил инерции относительно точки О 1

При имеющейся замкнутой механической системе тела взаимодействуют посредством сил тяготения и упругости, тогда их работа равняется изменению потенциальной энергии тел с противоположным знаком:

A = – (E р 2 – E р 1) .

Следуя из теоремы о кинетической энергии, формула работы примет вид

A = E k 2 - E k 1 .

Отсюда следует, что

E k 2 - E k 1 = – (E р 2 – E р 1) или E k 1 + E p 1 = E k 2 + E p 2 .

Определение 1

Сумма кинетической и потенциальной энергии тел , составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной .

Данное утверждение выражает закон сохранения энергии в замкнутой системе и в механических процессах, являющийся следствием законов Ньютона.

Определение 2

Закон сохранения энергии выполняется при взаимодействии сил с потенциальными энергиями в замкнутой системе.

Пример N

Примером применения такого закона служит нахождение минимальной прочности легкой нерастяжимости нити, которая удерживает тесло с массой m , вращая его вертикально относительно плоскости (задачи Гюйгенса). Подробное решение изображено на рисунке 1 . 20 . 1 .

Рисунок 1 . 20 . 1 . К задаче Гюйгенса, где F → принимается за силу натяжения нити в нижней точке траектории.

Запись закона сохранения полной энергии в верхней и нижней точках принимает вид

m v 1 2 2 = m v 2 2 2 + m g 2 l .

F → располагается перпендикулярно скорости тела, отсюда следует вывод, что она не совершает работу.

Если скорость вращения минимальная, то натяжение нити верхней точке равняется нулю, значит, центростремительное ускорение может быть сообщено только при помощи силы тяжести. Тогда

m v 2 2 l = m g .

Исходя из соотношений, получаем

v 1 m i n 2 = 5 g l .

Создание центростремительного ускорения производится силами F → и m g → с противоположными направлениями относительно друг друга. Тогда формула запишется:

m v 1 2 2 = F - m g .

Можно сделать вывод, что при минимальной скорости тела в верхней точке натяжение нити будет равняться по модулю значению F = 6 m g .

Очевидно, что прочность нити обязана превышать значение.

С помощью закона сохранения энергии посредством формулы можно получить связь между координатами и скоростями тела в двух разных точках траектории, не используя анализ закона движения тела во всех промежуточных точках. Данный закон позволяет заметно упрощать решение задач.

Реальные условия для движущихся тел предполагают действия сил тяготения, упругости, трения и сопротивления данной среды. Работа силы трения зависит от длины пути, поэтому она не является консервативной.

Определение 3

Между телами, составляющими замкнутую систему, действуют силы трения, тогда механическая энергия не сохраняется, ее часть переходит во внутреннюю. Любые физические взаимодействия не провоцируют возникновение или исчезновение энергии. Она переходит из одной формы в другую. Данный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

Следствием является утверждение о невозможности создания вечного двигателя (perpetuum mobile) – машины, которая совершала бы работу и не расходовала энергию.

Рисунок 1 . 20 . 2 . Проект вечного двигателя. Почему данная машина не будет работать?

Существует большое количество таких проектов. Они не имеют право на существование, так как при расчетах отчетливо видны одни ошибки конструкций всего прибора, другие замаскированы. Попытки реализовать такую машину тщетны, так как они противоречат закону сохранения и превращения энергии, поэтому нахождение формулы не даст результатов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Теория: Энергия никуда не исчезает, она из одного вида превращается в другой, и из ниоткуда она не возникает.
Энергия способна переходить в механическую работу или в .
Полная энергия замкнутой системы величина постоянная: E=E к +E п

Например: тело массой 2 кг поднимем на высоту 1 метр, на этой высоте потенциальная тела E п =mgh=20 Дж, по мере падения тела, высота уменьшается, потенциальная энергия так же уменьшается. При этом скорость тела начинает увеличиваться, в следствии чего и кинетическая энергия увеличивается. Получается, что энергия из потенциальной переходит в кинетическую. В момент касания поверхности, потенциальная энергия равна нулю, кинетическая максимальна и равна так же как в начале 20 Дж. Если тело упруго отразится, то по мере поднятия на высоту, кинетичесская энергия будет уменьшаться, и переходить в потенциальную.

Задания:  Мяч бросают вертикально вверх с поверхности Земли. Сопротивление воздуха пренебрежимо мало. При увеличении начальной скорости мяча в 2 раза высота подъёма мяча
  1) увеличится в √ 2 раза
 2) увеличится в 2 раза
  3) увеличится в 4 раза
 4) не изменится

Задание: Пуля, движущаяся со скоростью 600 м/с, пробила доску толщиной 1,5 см и на выходе из доски имела скорость 300 м/с. Определите массу пули, если средняя сила сопротивления, воздействующая на пулю в доске, равна 81 кН.

Тело массой m, брошенное с Земли вертикально вверх с начальной скоростью υ 0 , поднялось на высоту h 0 . Сопротивление воздуха пренебрежимо мало. Полная механическая энергия тела на некоторой промежуточной высоте h равна

Решение: Поскольку сопротивление воздуха пренебрежимо мало, следовательно полная энергия системы не изменяется. Полная механическая энергия тела на некоторой промежуточной высоте h равна энергии на максимальной высоте mgh 0 .
Ответ: 2
Задание ОГЭ по физике (фипи): Шарик движется вниз по наклонному желобу без трения. Какое из следующих утверждений об энергии шарика верно при таком движении?
1) Кинетическая энергия шарика увеличивается, его полная механическая энергия не изменяется.
2) Потенциальная энергия шарика увеличивается, его полная механическая энергия не изменяется.
3) И кинетическая энергия, и полная механическая энергия шарика увеличиваются.
4) И потенциальная энергия, и полная механическая энергия шарика уменьшаются.
Решение: При движении вниз, скорость шарика увеличивается. Следовательно кинетическая энергия увеличивается. Так как трения нет, и систему можно считать замкнутой, то полная механическая энергия не изменяется.
Ответ: 1
Задание ОГЭ по физике (фипи): Товарный вагон, движущийся по горизонтальному пути с небольшой скоростью, сталкивается с другим вагоном и останавливается. При этом пружина буфера сжимается. Какое из перечисленных ниже преобразований энергии происходит в этом процессе?
1) кинетическая энергия вагона преобразуется в потенциальную энергию пружины
2) кинетическая энергия вагона преобразуется в его потенциальную энергию
3) потенциальная энергия пружины преобразуется в её кинетическую энергию
4) внутренняя энергия пружины преобразуется в кинетическую энергию вагона
Решение: Сначала вагон двигался, значит у него была кинетическая энергия. При сталкновении пружина сжалась, т.е. кинетическая энергия вагона преобразуется в потенциальную энергию пружины

1.7. ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Формулировка закона сохранения механической энергии. Формулировка в случае наличия диссипативных сил. Графическое представление энергии. Финитное и инфинитное движения. Абсолютно упругий удар. Абсолютно неупругий удар.

Полная механическая энергия системы - энергия механического движения и взаимодействия, т.е. равна сумме кинетической и потенциальной энергий. Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы полная механическая энергия сохраняется, т.е. не изменяется со временем. Это -фундаментальный закон природы. Он является следствием однородности времени - инвариантности физических законов относительно выбора начала отсчета времени. Все силы в механике принято разделять на консервативные и неконсервативные . Консервативными называются силы, работа которых не зависит от формы траектории (пути) между двумя точками, а зависит только от начального и конечного положений тела относительно другого. Иначе говоря, работа консервативных сил по замкнутой траектории равна нулю. Примером консервативных сил являются сила тяжести, сила упругости и т.д. К ним, прежде всего, относятся диссипативные силы (преобразующие механическую энергию в другие виды энергии), например, сила трения. Если есть изменение, то равна работе диссипативных сил. Финитное – движение точек в ограниченной области пространства. Инфинитное – тело уходит на бесконечность. Абсолютно упругий удар - столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию. законы сохранения импульса и сохранения механической энергии выполняются . Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое тело. Не выполняется закон сохранения механической энергии: вследствие деформации часть кинетической энергии переходит во внутреннюю энергию тел (разогрев).

Введем понятие полной механической энергии частицы. Приращение кинетической энергии частицы равно элементарной работе результирующей всех сил, действующих на частицу. Если частица находится в потенциальном поле, то на нее действует консервативная сила со стороны этого потенциального поля. Кроме того, на частицу могут действовать и другие силы, имеющие иное происхождение. Назовем их сторонними силами .

Таким образом, результирующая всех сил, действующих на частицу, может быть представлена в виде . Работа всех этих сил идет на приращение кинетической энергии частицы:

Согласно (6.7), работа сил поля равна убыли потенциальной энергии частицы, т. е. . Подставив это выражение в предыдущее и перенеся член влево, получим

Отсюда видно, что работа сторонних сил идет на приращениe величины . Эту величину - сумму кинетичеcкой и потенциальной энергии - называют полной механической энергией частицы в поле :

на конечном перемещении из точки 1 в точку 2

(7 .3)

т.е . приращение полной механической энергии частицы на некотором пути равно алгебраической сумме работ всех сторонних сил , действующих на частицу на том же пути. Если , то полная механическая энергия частицы увеличивается, если же , то уменьшается.

Полная механическая энергия частицы может измениться под действием только сторонних сил. Отсюда непосредственно вытекает закон сохранения полной механической энергии частицы во внешнем поле: если сторонние силы отсутствуют или таковы, что алгебраическая сумма их мощностей равна нулю в течение интересующего нас времени, то полная механическая энергия частицы остается постоянной за это время . Иначе говоря,

(7 .4)

Уже в такой простейшей форме данный закон сохранения позволяет достаточно легко получать ответы на ряд важных вопросов без привлечения уравнений движения, что, как мы знаем, часто сопряжено с проведением громоздких и утомительных расчетов. Именно это обстоятельство и превращает законы сохранения в весьма действенный инструмент исследования.

Проиллюстрируем возможности и преимущества, которые дает применение закона сохранения (7.4), на следующем примере.

Пример. Пусть частица движется в одномерном потенциальном поле U (х. Если сторонние силы отсутствуют, то полная механическая энергия частицы в данном поле, т. е. Е, не меняется в процессе движения, и мы можем просто решить, например, такие вопросы, как:

1. Определить, не решая основного уравнения динамики, v (х) - скорость частицы в зависимости от ее координаты. Для этого достаточно знать, согласно уравнению (7.4) , конкретный вид потенциальной кривой U (х) и значение полной энергии Е (правая часть данного уравнения).

2. Установить область изменения координаты х частицы, в которой она может находиться при заданном значении полной энергии Е. Ясно, что в область, где U > Е, частица попасть не может, поскольку потенциальная энергия U частицы не может превышать ее полную энергию. Отсюда сразу следует, что при (рис. 7.1) частица может двигаться в области

между координатами (совершает колебания) или правее координаты . Перейти же из первой области во вторую (или обратно) частица не может: этому препятствует потенциальный барьер, разделяющий обе эти области. Заметим, что когда частица движется в ограниченной области поля, говорят, что она находится в потенциальной яме, в нашем случае - между .

Иначе ведет себя частица при (рис. 7.1): для нее доступна вся область правее . Если в начальный момент частица находилась в точке , то в дальнейшем она будет двигаться вправо. Определение изменения кинетической энергия частицы в зависимости от ее положения х может послужить полезным самостоятельным упражнением.

До сих пор мы ограничивались рассмотрением поведения одной частицы с энергетической точки зрения. Теперь перейдем к системе частиц. Это может быть любое тело, газ, любой механизм, Солнечная система и т. д.

В общем случае частицы системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. Систему частиц, на которую не действуют никакие посторонние тела или их воздействие пренебрежимо мало, называют замкнутой или изолированной. Понятие замкнутой системы является естественным обобщением понятия изолированной материальной точки и играет важную роль в физике.

Введем понятие потенциальной энергии системы частиц. Рассмотрим замкнутую систему, между частицами которой действуют только центральные силы, т. е. силы, зависящие при данном характере взаимодействия только от расстояния между ними и направленные по прямой, их соединяющей.

Покажем, что в любой системе отсчета работа всех этих сил при переходе системы частиц из одного положения в другое может быть представлена как убыль некоторой функции, зависящей при данном характере взаимодействия только от конфигурации самой системы или от относительного расположения ее частиц. Эту функцию назовем собственной потенциальной энергией системы, в отличие от внешней потенциальной энергии, характеризующей взаимодействие данной системы с другими телами.

Первоначально рассмотрим систему из двух частиц. Вычислим элементарную работу сил, с которыми эти частицы взаимодействуют между собой. Пусть в произвольной системе отсчета в некоторый момент времени положение частиц определяется радиус-векторами и . Если за время dt частицы совершили перемещения и соответственно, то работа сил взаимодействия и равна

Теперь учтем, что, согласно третьему закону Ньютона , поэтому предыдущее выражение можно переписать так:

Введем вектор , характеризующий положение 1-й частицы относительно 2-й. Тогда и после подстановки в выражение для работы получим

.

Сила - центральная, поэтому работа этой силы равна убыли потенциальной энергии взаимодействия данной пары частиц, т. е.

Так как функция зависит только от расстояния между частицами, то ясно, что работа не зависит от выбора системы отсчета.

Теперь рассмотрим систему из трех частиц, так как полученный в этом случае результат легко обобщить и на систему из произвольного числа частиц. Элементарная работа, которую совершают все силы взаимодействия при элементарном перемещении всех частиц, может быть представлена как сумма элементарных работ всех трех пар взаимодействий, т. е.

Но для каждой пары взаимодействий, как было показано , поэтому

где функция есть собственная потенциальная энергия данной системы частиц:

Так как каждое слагаемое этой суммы зависит от расстояния между соответствующими частицами, то очевидно, что собственная потенциальная энергия U данной системы зависит от относительного расположения частиц в один и тот же момент времени, или, другими словами, от конфигурации системы.

Подобные рассуждения справедливы и для системы из любого числа частиц. Поэтому можно утверждать, что каждой конфигурации произвольной системы частиц присуща своя собственная потенциальная энергия U , и работа всех центральных внутренних сил при изменении конфигурации системы равна убыли собственной потенциальной энергии системы, т. е.

(7 .5)

а при конечном перемещении всех частиц системы

(7 .6)

где и -значения потенциальной энергии системы в начальном и конечном состояниях.

Собственная потенциальная энергия системы U - величина неаддитивная, т. е. она не равна в общем случае сумме собственных потенциальных энергий ее частей. Необходимо учесть еще потенциальную энергию взаимодействия отдельных частей системы

,

(7 .7)

где - собственная потенциальная энергия части системы.

Следует также иметь в виду, что собственная потенциальная энергия системы, как и потенциальная энергия взаимодействия каждой пары частиц, определяется с точностью до прибавления произвольной постоянной, которая, впрочем, и здесь совершенно несущественна.

В заключение приведем полезные формулы для расчета собственной потенциальной энергии системы. Прежде всего покажем, что эта энергия может быть представлена как.

(7 .8)

где - потенциальная энергия взаимодействия частицы со всеми остальными частицами системы. Здесь сумма берется по всем частицам системы. Убедимся в справедливости этой формулы сначала для системы из трех частиц. Выше было показано, что собственная потенциальная энергия данной системы Преобразуем эту сумму следующим образом. Представим каждое слагаемое в симметричном виде: , ибо ясно, что . Тогда

Сгруппируем члены с одинаковым первым индексом:

Каждая сумма в круглых скобках представляет собой потенциальную энергию взаимодействия частицы с остальными двумя. Поэтому последнее выражение можно переписать так:

что полностью соответствует формуле (7.8).

Обобщение полученного результата на произвольную систему очевидно, ибо ясно, что подобные рассуждения совершенно не зависят от числа частиц, составляющих систему.

Для системы, взаимодействие между частицами которой носит гравитационный или кулоновский характер, формулу (7.8) можно преобразовать и к другому виду, воспользовавшись понятием потенциала. Заменим в (7.8) потенциальную энергию частицы выражением , где - масса (заряд) частицы, а - потенциал, создаваемый всеми остальными частицами системы в точке нахождения частицы.

где -объемная плотность массы или заряда, -элемент объема. Здесь интегрирование проводится по всему объему, занимаемому массами или зарядами.

Проведем классификацию сил по их свойствам. Известно, что частицы рассматриваемой системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. В соответствии с этим силы взаимодействия между частицами системы называют внутренними , а силы, обусловленные действием других тел, не входящих в данную систему, - внешними. В неинерциальной системе отсчета к последним нужно относить и силы инерции.

Кроме того, все силы делят на потенциальные и непотенциальные . Потенциальными называют силы, зависящие при данном характере взаимодействия только от конфигурации механической системы. Работа этих сил, как было показано, равна убыли потенциальной энергии системы. К непотенциальным силам относятся так называемые диссипативные силы - это силы трения и сопротивления, а также энергетические силы, вызывающие увеличение механической энергии системы за счет других видов энергии (например, взрыв артиллерийского снаряда). Важной особенностью данных сил является то, что суммарная работа внутренних диссипативных сил рассматриваемой системы отрицательна, а энергетических сил - положительна, причем в любой системе отсчета. Докажем это для диссипативных сил.

Любая диссипативная сила может быть представлена в виде

(7 . 1 4)

где - скорость данного тела относительно другого тела (или среды), с которым оно взаимодействует; - положительный коэффициент, зависящий в общем случае от скорости . Сила всегда направлена противоположно вектору . В зависимости от выбора системы отсчета работа этой силы может быть как положительной, так и отрицательной. Суммарная же работа всех внутренних диссипативных сил - величина всегда отрицательная . Переходя к доказательству этого, отметим прежде всего, что внутренние диссипативные силы в данной системе будут встречаться попарно, причем в каждой паре, согласно третьему закону Ньютона, они одинаковы по модулю и противоположны по направлению. Найдем элементарную работу произвольной пары диссипативных сил взаимодействия между телами 1 и 2 в системе отсчета, где скорости этих тел в данный момент равны :

Теперь учтем, что - скорость тела 1 относительно тела 2 , а также то, что . Тогда выражение для работы преобразуется так:

Отсюда видно, что работа произвольной пары внутренних диссипативных сил взаимодействия всегда отрицательна, а значит и суммарная работа всех пар внутренних диссипативных сил также всегда отрицательна. Таким образом, действительно,

(7 . 1 5)

Теперь можно сформулировать закон сохранения полной механической энергии системы частиц. Выше было показано, что приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы. Разделив эти силы на внешние и внутренние, а внутренние, в свою очередь,- на потенциальные и непотенциальные, запишем предыдущее утверждение так:

Теперь учтем, что работа внутренних потенциальных сил равна убыли собственной потенциальной энергии системы, т.е.

Тогда предыдущее выражение примет вид

Очевидно, энергия Е зависит от скоростей частицы системы, характера взаимодействия между ними и конфигурации системы. Кроме того, энергия Е, как и потенциальная энергия U , определяется с точностью до прибавления несущественной произвольной постоянной и является величиной неаддитивной , т. е. энергия Е системы не равна в общем случае сумме энергий ее отдельных частей. В соответствии c (7.7)

(7 . 1 8)

где - механическая энергия части системы, - потенциальная энергия взаимодействия ее отдельных частей.

Вернемся к формуле (7.16). Перепишем ее с учетом (7.17) в виде

Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом ее значение сохраняется.

Закон сохранения энергии - фундаментальный закон природы, заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Закон сохранения механической энергии

В механике закон сохранения энергии утверждает, что в замкнутой системе частиц, полная энергия, которая является суммой кинетической и потенциальной энергии и не зависит от времени, то есть является интегралом движения. Закон сохранения энергии справедлив только для замкнутых систем, то есть при отсутствии внешних полей или взаимодействий.

Силы взаимодействия между телами, для которых выполняется закон сохранения механической энергии называются консервативными силами. Закон сохранения механической энергии не выполняется для сил трения, поскольку при наличии сил трения происходит преобразование механической энергии в тепловую.

Математическая формулировка

Эволюция механической системы материальных точек с массами \(m_i\) по второму закону Ньютона удовлетворяет системе уравнений

\[ m_i\dot{\mathbf{v}_i} = \mathbf{F}_i \]

где
\(\mathbf{v}_i \) — скорости материальных точек, а \(\mathbf{F}_i \) — силы, действующие на эти точки.

Если подать силы, как сумму потенциальных сил \(\mathbf{F}_i^p \) и непотенциальных сил \(\mathbf{F}_i^d \) , а потенциальные силы записать в виде

\[ \mathbf{F}_i^p = - \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

то, домножив все уравнения на \(\mathbf{v}_i \) можно получить

\[ \frac{d}{dt} \sum_i \frac{mv_i^2}{2} = - \sum_i \frac{d\mathbf{r}_i}{dt}\cdot \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) + \sum_i \frac{d\mathbf{r}_i}{dt} \cdot \mathbf{F}_i^d \]

Первая сумма в правой части уравнения является ни чем иным, как производной по времени от сложной функции, а следовательно, если ввести обозначения

\[ E = \sum_i \frac{mv_i^2}{2} + U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

и назвать эту величину механической энергией , то, интегрируя уравнения с момента времени t=0 до момента времени t, можно получить

\[ E(t) - E(0) = \int_L \mathbf{F}_i^d \cdot d\mathbf{r}_i \]

где интегрирование проводится вдоль траекторий движения материальных точек.

Таким образом, изменение механической энергии системы материальных точек со временем равно работе непотенциальных сил.

Закон сохранения энергии в механике выполняется только для систем, в которых все силы потенциальные.

Закон сохранения энергии для электромагнитного поля

В электродинамике закон сохранения энергии исторически формулируется в виде теоремы Пойтинга.

Изменение электромагнитной энергии, заключенной в неком объеме, за некий интервал времени равно потоку электромагнитной энергии через поверхность, ограничивающую данный объем, и количеству тепловой энергии, выделившейся в данном объеме, взятой с обратным знаком.

$ \frac{d}{dt}\int_{V}\omega_{em}dV=-\oint_{\partial V}\vec{S}d\vec{\sigma}-\int_V \vec{j}\cdot \vec{E}dV $

Электромагнитное поле обладает энергией, которая распределяется в пространстве, занятом полем. При изменении характеристик поля меняется и распределение энергии. Она перетекает из одной области пространства в другую, переходя, возможно, в другие формы. Закон сохранения энергии для электромагнитного поля является следствием полевых уравнений.

Внутри некоторой замкнутой поверхности S, ограничивающей объем пространства V , занятого полем, содержится энергия W — энергия электромагнитного поля:

W = Σ(εε 0 E i 2 / 2 + μμ 0 H i 2 / 2) ΔV i .

Если в этом объеме имеются токи, то электрическое поле производит над движущимися зарядами работу, за единицу времени равную

N = Σ i j̅ i ×E̅ i . ΔV i .

Это величина энергии поля, которая переходит в другие формы. Из уравнений Максвелла следует, что

ΔW + NΔt = -Δt S S̅ × n̅ . dA,

где ΔW — изменение энергии электромагнитного поля в рассматриваемом объеме за время Δt, а вектор = × называется вектором Пойнтинга .

Это закон сохранения энергии в электродинамике .

Через малую площадку величиной ΔA с единичным вектором нормали за единицу времени в направлении вектора протекает энергия × n̅ . ΔA, где — значение вектора Пойнтинга в пределах площадки. Сумма этих величин по всем элементам замкнутой поверхности (обозначена знаком интеграла), стоящая в правой части равенства , представляет собой энергию, вытекающую из объема, ограниченного поверхностью, за единицу времени (если эта величина отрицательна, то энергия втекает в объем). Вектор Пойнтинга определяет поток энергии электромагнитного поля через площадку, он отличен от нуля всюду, где векторное произведение векторов напряженности электрического и магнитного полей отлично от нуля.

Можно выделить три главных направления практического применения электричества: передача и преобразование информации (радио, телевидение, компьютеры), передача импульса и момента импульса (электродвигатели), преобразование и передача энергии (электрогенераторы и линии электропередачи). И импульс, и энергия переносятся полем через пустое пространство, наличие среды приводит лишь к потерям. Энергия не передается по проводам! Провода с током нужны для формирования электрического и магнитного полей такой конфигурации, чтобы поток энергии, определяемый векторами Пойнтинга во всех точках пространства, был направлен от источника энергии к потребителю. Энергия может передаваться и без проводов, тогда ее переносят электромагнитные волны. (Внутренняя энергия Солнца убывает, уносится электромагнитными волнами, в основном светом. Благодаря части этой энергии поддерживается жизнь на Земле.)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!